Euclidean distance: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 48: | Line 48: | ||
== See Also == | == See Also == | ||
* [[Euclidean angle]] | |||
* [[Geometric norm]] | * [[Geometric norm]] | ||
* [[Magnitude]] | * [[Magnitude]] | ||
* [[Attitude]] | * [[Attitude]] |
Revision as of 21:15, 21 April 2024
The Euclidean distance $$d(\mathbf a, \mathbf b)$$ between two geometric objects a and b can be measured by the homogeneous magnitude given by
- $$d(\mathbf a, \mathbf b) = \left\Vert\operatorname{att}(\mathbf a \wedge \mathbf b)\right\Vert_\unicode{x25CF} + \left\Vert\mathbf a \wedge \operatorname{att}(\mathbf b)\right\Vert_\unicode{x25CB}$$.
In the case that the grades of $$\mathbf a$$ and $$\mathbf b$$ sum to $$n$$, the dimension of the algebra, a signed distance can be obtained by using the formula
- $$d(\mathbf a, \mathbf b) = \mathbf a \vee \mathbf b + \left\Vert\mathbf a \wedge \operatorname{att}(\mathbf b)\right\Vert_\unicode{x25CB}$$.
The following table lists formulas for distances between the main types of geometric objects in the 4D rigid geometric algebra over 3D Euclidean space. These formulas are general and do not require the geometric objects to be unitized. Most of them become simpler if unitization can be assumed.
The points, lines, and planes appearing in the distance formulas are defined as follows:
- $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
- $$\mathbf q = q_x \mathbf e_1 + q_y \mathbf e_2 + q_z \mathbf e_3 + q_w \mathbf e_4$$
- $$\mathbf k = k_{vx} \mathbf e_{41} + k_{vy} \mathbf e_{42} + k_{vz} \mathbf e_{43} + k_{mx} \mathbf e_{23} + k_{my} \mathbf e_{31} + k_{mz} \mathbf e_{12}$$
- $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
- $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
In the Book
- Euclidean distances are discussed in Section 2.11.