Translation: Difference between revisions
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) |
||
Line 56: | Line 56: | ||
== See Also == | == See Also == | ||
* [[ | * [[Reciprocal translation]] | ||
* [[Rotation]] | * [[Rotation]] | ||
* [[Reflection]] | * [[Reflection]] | ||
* [[Inversion]] | * [[Inversion]] | ||
* [[Transflection]] | * [[Transflection]] |
Revision as of 20:19, 5 September 2023
A translation is a proper isometry of Euclidean space.
The specific kind of motor
- $$\mathbf T = {t_x \mathbf e_{23} + t_y \mathbf e_{31} + t_z \mathbf e_{12} + \large\unicode{x1d7d9}}$$
performs a translation by twice the displacement vector $$\mathbf t = (t_x, t_y, t_z)$$ when used as an operator in the sandwich antiproduct. This can be interpreted as a rotation about the line at infinity perpendicular to the direction $$\mathbf t$$.
Exponential Form
A translation by a distance $$\delta$$ perpendicular to a unitized plane $$\mathbf g$$ can be expressed as an exponential of the plane's attitude as
- $$\mathbf T = \exp_\unicode{x27C7}\left(\dfrac{1}{2}\delta \operatorname{att}(\mathbf g)\right) = \dfrac{\delta}{2} \operatorname{att}(\mathbf g) + {\large\unicode{x1d7d9}}$$
Matrix Form
When a translation $$\mathbf T$$ is applied to a point, it is equivalent to premultiplying the point by the $$4 \times 4$$ matrix
- $$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}$$ .
Translation to Origin
A point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ is translated to the origin by the operator
- $$\mathbf T = {-\dfrac{p_{x\vphantom{y}}}{2p_w} \mathbf e_{23} - \dfrac{p_y}{2p_w} \mathbf e_{31} - \dfrac{p_{z\vphantom{y}}}{2p_w} \mathbf e_{12} + \large\unicode{x1d7d9}}$$ .
Calculation
The exact translation calculations for points, lines, and planes are shown in the following table.
Type | Translation |
---|---|
Point
$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ |
$$\mathbf T \mathbin{\unicode{x27C7}} \mathbf p \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = (p_x + 2t_xp_w)\mathbf e_1 + (p_y + 2t_yp_w)\mathbf e_2 + (p_z + 2t_zp_w)\mathbf e_3 + p_w\mathbf e_4$$ |
Line
$$\begin{split}\boldsymbol l =\, &l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} \\ +\, &l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}\end{split}$$ |
$$\mathbf T \mathbin{\unicode{x27C7}} \boldsymbol l \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + (l_{mx} + 2t_y l_{vz} - 2t_z l_{vy})\mathbf e_{23} + (l_{my} + 2t_z l_{vx} - 2t_x l_{vz})\mathbf e_{31} + (l_{mz} + 2t_x l_{vy} - 2t_y l_{vx})\mathbf e_{12}$$ |
Plane
$$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ |
$$\mathbf T \mathbin{\unicode{x27C7}} \mathbf g \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + (g_w - 2t_xg_x - 2t_yg_y - 2t_zg_z) \mathbf e_{321}$$ |