MediaWiki API result
This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.
Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.
See the complete documentation, or the API help for more information.
{
"compare": {
"fromid": 1,
"fromrevid": 1,
"fromns": 0,
"fromtitle": "Main Page",
"toid": 1,
"torevid": 2,
"tons": 0,
"totitle": "Main Page",
"*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">Line 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">Line 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><strong>MediaWiki has been installed.</strong></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">__NOTOC__</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Rigid Geometric Algebra ==</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br/></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br/></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Consult </del>the <del class=\"diffchange diffchange-inline\">[https://www</del>.<del class=\"diffchange diffchange-inline\">mediawiki.org/</del>wiki<del class=\"diffchange diffchange-inline\">/Special:MyLanguage/Help</del>:<del class=\"diffchange diffchange-inline\">Contents User's Guide] for information on using the wiki software.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">This wiki is a repository of information about Rigid Geometric Algebra (RGA), and specifically </ins>the <ins class=\"diffchange diffchange-inline\">four-dimensional Clifford algebra $$\\mathcal G_{3,0,1}$$</ins>. <ins class=\"diffchange diffchange-inline\">This </ins>wiki <ins class=\"diffchange diffchange-inline\">is associated with the following websites</ins>:</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br/></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br/></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Getting started ==</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* [<ins class=\"diffchange diffchange-inline\">http</ins>://<ins class=\"diffchange diffchange-inline\">projectivegeometricalgebra</ins>.org <ins class=\"diffchange diffchange-inline\">Projective Geometric Algebra overview site</ins>]</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www.mediawiki</del>.org<del class=\"diffchange diffchange-inline\">/wiki/Special:MyLanguage/Manual:Configuration_settings Configuration settings list</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* [<ins class=\"diffchange diffchange-inline\">http</ins>://<ins class=\"diffchange diffchange-inline\">conformalgeometricalgebra</ins>.org/wiki/<ins class=\"diffchange diffchange-inline\">index.php?title=Main_Page Conformal Geometric Algebra companion site</ins>]</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www.mediawiki</del>.org/wiki/<del class=\"diffchange diffchange-inline\">Special:MyLanguage/Manual:FAQ MediaWiki FAQ</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">lists.wikimedia</del>.org/<del class=\"diffchange diffchange-inline\">postorius</del>/<del class=\"diffchange diffchange-inline\">lists/mediawiki-announce</del>.<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia</del>.org<del class=\"diffchange diffchange-inline\">/ MediaWiki release mailing list</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Rigid geometric algebra is a mathematical model that naturally incorporates representations for Euclidean [[points]], [[lines]], and [[planes]] in 3D space as well as operations for performing [[rotations]], [[reflections]], and [[translations]] in a single algebraic structure. It completely subsumes conventional models that include homogeneous coordinates, Pl\u00c3\u00bccker coordinates, [[quaternions]], and screw theory (which makes use of dual quaternions). This makes rigid geometric algebra a natural fit for areas of computer science that routinely use these mathematical concepts, especially computer graphics and robotics. </ins>[<ins class=\"diffchange diffchange-inline\">http</ins>://<ins class=\"diffchange diffchange-inline\">conformalgeometricalgebra</ins>.org/<ins class=\"diffchange diffchange-inline\">wiki</ins>/<ins class=\"diffchange diffchange-inline\">index.php?title=Main_Page Conformal Geometric Algebra] (CGA) is a larger algebra that contains the complete RGA and also includes round objects like circles and spheres</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">https</del>:<del class=\"diffchange diffchange-inline\">//www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Localisation#Translation_resources Localise MediaWiki for your language</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">https://www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Manual:Combating_spam Learn </del>how to <del class=\"diffchange diffchange-inline\">combat spam on your wiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Rigid geometric algebra is an area of active research, and new information is frequently being added to this wiki</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''If you are experiencing problems with the LaTeX on this site, please clear the cookies for rigidgeometricalgebra</ins>.org <ins class=\"diffchange diffchange-inline\">and reload.'''</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Introduction ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Image:basis.svg|thumb|right|400px|'''Table 1.''' The 16 basis elements of the 4D rigid geometric algebra.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">In the four-dimensional rigid geometric algebra, there are 16 graded basis elements. These are listed in Table 1.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">There is a single ''[[scalar]</ins>]<ins class=\"diffchange diffchange-inline\">'' basis element that we denote by $$\\mathbf 1$$, in bold, and its multiples correspond to the real numbers, which are values that have no dimensions.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">There are four ''[</ins>[<ins class=\"diffchange diffchange-inline\">vector]]'' basis elements named $$\\mathbf e_1$$, $$\\mathbf e_2$$, $$\\mathbf e_3$$, and $$\\mathbf e_4$$ that have one-dimensional extents. A general vector $$\\mathbf v = (v_x, v_y, v_z, v_w)$$ has the form</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\">$$\\mathbf v = v_x \\mathbf e_1 + v_y \\mathbf e_2 + v_z \\mathbf e_3 + v_w \\mathbf e_4$$ .</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">There are six ''[[bivector]]'' basis elements named $$\\mathbf e_{23}$$, $$\\mathbf e_{31}$$, $$\\mathbf e_{12}$$, $$\\mathbf e_{41}$$, $$\\mathbf e_{42}$$, and $$\\mathbf e_{43}$$ having two-dimensional extents. These correspond to all possible [[wedge products]] between pairs of vector basis elements up to order. We use the multiple subscript notation $$\\mathbf e_{ij}$$ as shorthand for the wedge product $$\\mathbf e_i \\wedge \\mathbf e_j$$. Numerical subscripts for the bivector basis elements are always written in the order shown in Table 1, and the bivectors are negated when basis vectors are multiplied in the opposite order. For example, $$\\mathbf e_3 \\wedge \\mathbf e_2 = -\\mathbf e_{23}$$.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">There are four ''[[trivector]]'' basis elements named $$\\mathbf e_{423}$$, $$\\mathbf e_{431}$$, $$\\mathbf e_{412}$$, and $$\\mathbf e_{321}$$ having three-dimensional extents. These correspond to all possible wedge products of three different vector basis elements. Again, numerical subscripts will always be written exactly as shown in the table, and negation will be applied for any odd permutation of the multiplication order.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Finally, there is a single ''quadrivector'' basis element $$\\mathbf e_1 \\wedge \\mathbf e_2 \\wedge \\mathbf e_3 \\wedge \\mathbf e_4$$ having four-dimensional extents. Because the quadrivector element has only one component, it is often called the ''pseudoscalar'', and it is often denoted by $$\\mathbf I_4$$. The subscript 4 corresponds to the number of dimensions, and it is usually dropped when the dimensionality is clear from the context</ins>. <ins class=\"diffchange diffchange-inline\">Because the quadrivector contains all four dimensions, it is also called the ''volume element'' of the algebra, and this is often denoted by $$\\mathbf E_4$$</ins>. <ins class=\"diffchange diffchange-inline\">We use the notation</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\">$${\\large\\unicode{x1D7D9}} = \\mathbf e_1 \\wedge \\mathbf e_2 \\wedge \\mathbf e_3 \\wedge \\mathbf e_4$$ ,</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">with a blackboard bold $${\\large\\unicode{x1D7D9}}$$, to emphasize that the volume element is in symmetric opposition to the scalar basis element $$\\mathbf 1$$ and is equally functional within the algebra. We refer to multiples of the basis element $${\\large\\unicode{x1D7D9}}$$ as ''[[antiscalars]]''. Scalars and antiscalars are two sides of the same coin, and neither has a place of greater importance. We eschew the term pseudoscalar due to its portrayal of the element $${\\large\\unicode{x1D7D9}}$$ as different from and perhaps somewhat less significant than the element $$\\mathbf 1$$. It is not.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">As shown in the rightmost column in the table, each of the basis elements can be identified by which specific multiplicative combination of the four available dimensions it represents. This is essentially a four-bit code in which black bars correspond to the dimensions that are present or ''full'', and white bars correspond to the dimensions that are absent or ''empty''. The ''[[grade]]'' of a basis element $$\\mathbf x$$, denoted by $$\\operatorname{gr}(\\mathbf x)$$, is the number of black bars it has, which is the same as the number of vector basis elements in its factorization.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">For a thorough understanding of the algebraic structure, it is critically important to recognize that there is a fundamental symmetry at work. We have assigned a dimensionality to each basis element according to the number of full dimensions it has, but it is equally valid to assign a dimensionality according to the number of empty dimensions each one has. Vectors, bivectors, and trivectors have dimensions one, two, and three when we count the black bars. However, from the opposite perspective, vectors, bivectors, and trivectors have dimensions three, two, and one when we count the white bars. Both of these interpretations are simultaneously correct, and together they establish the concept of ''[[duality]]''. [[Duality]</ins>] <ins class=\"diffchange diffchange-inline\">is always present, and it pervades geometric algebra. It can be found not only in the elements of the algebra but in the operations that act on those elements.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">In addition to the grade, we can assign an ''[</ins>[<ins class=\"diffchange diffchange-inline\">antigrade]]'' to each basis element $$\\mathbf x$$</ins>. <ins class=\"diffchange diffchange-inline\">Denoted by $$\\operatorname{ag}(\\mathbf x)$$, the antigrade of $$\\mathbf x$$ is the number of vector basis elements missing from its factorization, which is the number of white bars in the table</ins>. <ins class=\"diffchange diffchange-inline\">Of course, it is always the case that</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\">$$\\operatorname{gr}(\\mathbf x) + \\operatorname{ag}(\\mathbf x) = n$$ ,</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">where $$n$$ is the total number of dimensions in the algebra. Whenever we can make a statement about how an operation relates to the grade of its inputs and outputs, we can make the same statement about </ins>how <ins class=\"diffchange diffchange-inline\">the dual operation relates </ins>to <ins class=\"diffchange diffchange-inline\">the antigrade of its inputs and outputs.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">In an $$n$$-dimensional algebra, the elements with grade $$n - 1$$ are called ''[[antivectors]]''. Antivectors have the same number of components as vectors, and the two can be regarded as the dimensional inverses of each other. Vectors have grade one because they have one full dimension, and antivectors have antigrade one because they have one empty dimension.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Pages ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== The five main types of rigid geometric objects ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Point]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Line]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Plane]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Motor]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Flector]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Various properties and unary operations ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Grade and antigrade]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Complements]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Reverses]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Bulk and weight]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Attitude]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Duality]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Geometric norm]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Geometric property]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Unitization]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Products and other binary operations ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Geometric products]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Exterior products]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Interior products]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Dot products]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Join and meet]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Projections]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Commutators]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Euclidean distance]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Isometries of 3D space ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Transformation groups]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Translation]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Rotation]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Reflection]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Inversion]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* [[Transflection]</ins>]</div></td></tr>\n"
}
}