Join and meet: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) (Created page with "The ''join'' is a binary operation that calculates the higher-dimensional geometry containing its two operands, similar to a union. The ''meet'' is another binary operation that calculates the lower-dimensional geometry shared by its two operands, similar to an intersection. The points, lines, and planes appearing in the following tables are defined as follows: :$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ :$$\mathbf...") |
Eric Lengyel (talk | contribs) No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
{| class="wikitable" | {| class="wikitable" | ||
! Formula | ! Formula || Description || Illustration | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf p \wedge \mathbf q =\, &(p_wq_x - p_xq_w)\,\mathbf e_{41} + (p_wq_y - p_yq_w)\,\mathbf e_{42} + (p_wq_z - p_zq_w)\,\mathbf e_{43} \\ +\, &(p_yq_z - p_zq_y)\,\mathbf e_{23} + (p_zq_x - p_xq_z)\,\mathbf e_{31} + (p_xq_y - p_yq_x)\,\mathbf e_{12}\end{split}$$ | | style="padding: 12px;" | $$\begin{split}\mathbf p \wedge \mathbf q =\, &(p_wq_x - p_xq_w)\,\mathbf e_{41} + (p_wq_y - p_yq_w)\,\mathbf e_{42} + (p_wq_z - p_zq_w)\,\mathbf e_{43} \\ +\, &(p_yq_z - p_zq_y)\,\mathbf e_{23} + (p_zq_x - p_xq_z)\,\mathbf e_{31} + (p_xq_y - p_yq_x)\,\mathbf e_{12}\end{split}$$ | ||
| style="padding: 12px;" | Line containing points $$\mathbf p$$ and $$\mathbf q$$. | | style="padding: 12px;" | Line containing points $$\mathbf p$$ and $$\mathbf q$$. | ||
Line 22: | Line 21: | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\boldsymbol l \wedge \mathbf p =\, &(l_{vy} p_z - l_{vz} p_y + l_{mx} p_w)\,\mathbf e_{423} \\ +\, &(l_{vz} p_x - l_{vx} p_z + l_{my} p_w)\,\mathbf e_{431} \\ +\, &(l_{vx} p_y - l_{vy} p_x + l_{mz} p_w)\,\mathbf e_{412} \\ -\, &(l_{mx} p_x + l_{my} p_y + l_{mz} p_z)\,\mathbf e_{321}\end{split}$$ | | style="padding: 12px;" | $$\begin{split}\boldsymbol l \wedge \mathbf p =\, &(l_{vy} p_z - l_{vz} p_y + l_{mx} p_w)\,\mathbf e_{423} \\ +\, &(l_{vz} p_x - l_{vx} p_z + l_{my} p_w)\,\mathbf e_{431} \\ +\, &(l_{vx} p_y - l_{vy} p_x + l_{mz} p_w)\,\mathbf e_{412} \\ -\, &(l_{mx} p_x + l_{my} p_y + l_{mz} p_z)\,\mathbf e_{321}\end{split}$$ | ||
| style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and point $$\mathbf p$$. | | style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and point $$\mathbf p$$. | ||
Line 29: | Line 27: | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf g \vee \mathbf h =\, &(g_zh_y - g_yh_z)\,\mathbf e_{41} + (g_xh_z - g_zh_x)\,\mathbf e_{42} + (g_yh_x - g_xh_y)\,\mathbf e_{43} \\ +\, &(g_xh_w - g_wh_x)\,\mathbf e_{23} + (g_yh_w - g_wh_y)\,\mathbf e_{31} + (g_zh_w - g_wh_z)\,\mathbf e_{12}\end{split}$$ | | style="padding: 12px;" | $$\begin{split}\mathbf g \vee \mathbf h =\, &(g_zh_y - g_yh_z)\,\mathbf e_{41} + (g_xh_z - g_zh_x)\,\mathbf e_{42} + (g_yh_x - g_xh_y)\,\mathbf e_{43} \\ +\, &(g_xh_w - g_wh_x)\,\mathbf e_{23} + (g_yh_w - g_wh_y)\,\mathbf e_{31} + (g_zh_w - g_wh_z)\,\mathbf e_{12}\end{split}$$ | ||
| style="padding: 12px;" | Line where planes $$\mathbf g$$ and $$\mathbf h$$ intersect. | | style="padding: 12px;" | Line where planes $$\mathbf g$$ and $$\mathbf h$$ intersect. | ||
Line 36: | Line 33: | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\boldsymbol l \vee \mathbf g =\, &(l_{my} g_z - l_{mz} g_y + l_{vx} g_w)\,\mathbf e_1 \\ +\, &(l_{mz} g_x - l_{mx} g_z + l_{vy} g_w)\,\mathbf e_2 \\ +\, &(l_{mx} g_y - l_{my} g_x + l_{vz} g_w)\,\mathbf e_3 \\ -\, &(l_{vx} g_x + l_{vy} g_y + l_{vz} g_z)\,\mathbf e_4\end{split}$$ | | style="padding: 12px;" | $$\begin{split}\boldsymbol l \vee \mathbf g =\, &(l_{my} g_z - l_{mz} g_y + l_{vx} g_w)\,\mathbf e_1 \\ +\, &(l_{mz} g_x - l_{mx} g_z + l_{vy} g_w)\,\mathbf e_2 \\ +\, &(l_{mx} g_y - l_{my} g_x + l_{vz} g_w)\,\mathbf e_3 \\ -\, &(l_{vx} g_x + l_{vy} g_y + l_{vz} g_z)\,\mathbf e_4\end{split}$$ | ||
| style="padding: 12px;" | Point where line $$\boldsymbol l$$ intersects plane $$\mathbf g$$. | | style="padding: 12px;" | Point where line $$\boldsymbol l$$ intersects plane $$\mathbf g$$. | ||
Line 42: | Line 38: | ||
| style="padding: 12px;" | [[Image:line_meet_plane.svg|250px]] | | style="padding: 12px;" | [[Image:line_meet_plane.svg|250px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\ | | style="padding: 12px;" | $$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &-p_wg_x \mathbf e_{41} - p_wg_y \mathbf e_{42} - p_wg_z \mathbf e_{43} \\ +\, &(p_zg_y - p_yg_z)\,\mathbf e_{23} + (p_xg_z - p_zg_x)\,\mathbf e_{31} + (p_yg_x - p_xg_y)\,\mathbf e_{12}\end{split}$$ | ||
| style="padding: 12px;" | $$ | | style="padding: 12px;" | Line containing point $$\mathbf p$$ and perpendicular to plane $$\mathbf g$$. | ||
| style="padding: 12px; text-align: center;" | [[Image:plane_connect_point.svg|200px]] | |||
| style="padding: 12px;" | [[Image: | |||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\ | | style="padding: 12px;" | $$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} =\, &-p_w l_{vx} \mathbf e_{423} - p_w l_{vy} \mathbf e_{431} - p_w l_{vz} \mathbf e_{412} \\ +\, &(p_x l_{vx} + p_y l_{vy} + p_z l_{vz})\,\mathbf e_{321}\end{split}$$ | ||
| style="padding: 12px;" | $$ | | style="padding: 12px;" | Plane containing point $$\mathbf p$$ and perpendicular to line $$\boldsymbol l$$. | ||
| style="padding: 12px; text-align: center;" | [[Image:line_connect_point.svg|200px]] | |||
| style="padding: 12px;" | [[Image: | |||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\ | | style="padding: 12px;" | $$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &(l_{vy} g_z - l_{vz} g_y)\,\mathbf e_{423} + (l_{vz} g_x - l_{vx} g_z)\,\mathbf e_{431} + (l_{vx} g_y - l_{vy} g_x)\,\mathbf e_{412} \\ -\, &(l_{mx} g_x + l_{my} g_y + l_{mz} g_z)\,\mathbf e_{321}\end{split}$$ | ||
| style="padding: 12px;" | $$ | | style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and perpendicular to plane $$\mathbf g$$. | ||
Normal direction is $$(0,0,0)$$ if $$\boldsymbol l$$ is perpendicular to $$\mathbf g$$. | Normal direction is $$(0,0,0)$$ if $$\boldsymbol l$$ is perpendicular to $$\mathbf g$$. | ||
| style="padding: 12px;" | [[Image: | | style="padding: 12px; text-align: center;" | [[Image:plane_connect_line.svg|200px]] | ||
|} | |} | ||
Line 63: | Line 56: | ||
* [[Exterior products]] | * [[Exterior products]] | ||
Latest revision as of 20:34, 26 October 2023
The join is a binary operation that calculates the higher-dimensional geometry containing its two operands, similar to a union. The meet is another binary operation that calculates the lower-dimensional geometry shared by its two operands, similar to an intersection.
The points, lines, and planes appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
- $$\mathbf q = q_x \mathbf e_1 + q_y \mathbf e_2 + q_z \mathbf e_3 + q_w \mathbf e_4$$
- $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
- $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
- $$\mathbf h = h_x \mathbf e_{423} + h_y \mathbf e_{431} + h_z \mathbf e_{412} + h_w \mathbf e_{321}$$
The join operation is performed by taking the wedge product between two geometric objects. The meet operation is performed by taking the antiwedge product between two geometric objects.