File:Plane onto line.svg and Translation: Difference between pages
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
__NOTOC__ | |||
A ''translation'' is a proper isometry of Euclidean space. | |||
The specific kind of [[motor]] | |||
:$$\mathbf T = {\tau_x \mathbf e_{23} + \tau_y \mathbf e_{31} + \tau_z \mathbf e_{12} + \large\unicode{x1d7d9}}$$ | |||
performs a translation by twice the displacement vector $$\boldsymbol \tau = (\tau_x, \tau_y, \tau_z)$$ when used as an operator in the sandwich antiproduct. This can be interpreted as a rotation about the [[line]] at infinity perpendicular to the direction $$\boldsymbol \tau$$. | |||
== Exponential Form == | |||
A translation by a distance $$\delta$$ perpendicular to a unitized [[plane]] $$\mathbf g$$ can be expressed as an exponential of the plane's [[attitude]] as | |||
:$$\mathbf T = \exp_\unicode{x27C7}\left(\dfrac{1}{2}\delta \operatorname{att}(\mathbf g)\right) = \dfrac{\delta}{2} \operatorname{att}(\mathbf g) + {\large\unicode{x1d7d9}}$$ | |||
== Matrix Form == | |||
When a translation $$\mathbf T$$ is applied to a [[point]], it is equivalent to premultiplying the point by the $$4 \times 4$$ matrix | |||
:$$\begin{bmatrix} | |||
1 & 0 & 0 & \tau_x \\ | |||
0 & 1 & 0 & \tau_y \\ | |||
0 & 0 & 1 & \tau_z \\ | |||
0 & 0 & 0 & 1 \\ | |||
\end{bmatrix}$$ . | |||
== Translation to Origin == | |||
A point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ is translated to the origin by the operator | |||
:$$\mathbf T = {-\dfrac{p_{x\vphantom{y}}}{2p_w} \mathbf e_{23} - \dfrac{p_y}{2p_w} \mathbf e_{31} - \dfrac{p_{z\vphantom{y}}}{2p_w} \mathbf e_{12} + \large\unicode{x1d7d9}}$$ . | |||
== Calculation == | |||
The exact translation calculations for points, lines, and planes are shown in the following table. | |||
{| class="wikitable" | |||
! Type || Translation | |||
|- | |||
| style="padding: 12px;" | [[Point]] | |||
$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | |||
| style="padding: 12px;" | $$\mathbf T \mathbin{\unicode{x27C7}} \mathbf p \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = (p_x + 2\tau_xp_w)\mathbf e_1 + (p_y + 2\tau_yp_w)\mathbf e_2 + (p_z + 2\tau_zp_w)\mathbf e_3 + p_w\mathbf e_4$$ | |||
|- | |||
| style="padding: 12px;" | [[Line]] | |||
$$\begin{split}\boldsymbol l =\, &l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} \\ +\, &l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}\end{split}$$ | |||
| style="padding: 12px;" | $$\mathbf T \mathbin{\unicode{x27C7}} \boldsymbol l \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + (l_{mx} + 2\tau_y l_{vz} - 2\tau_z l_{vy})\mathbf e_{23} + (l_{my} + 2\tau_z l_{vx} - 2\tau_x l_{vz})\mathbf e_{31} + (l_{mz} + 2\tau_x l_{vy} - 2\tau_y l_{vx})\mathbf e_{12}$$ | |||
|- | |||
| style="padding: 12px;" | [[Plane]] | |||
$$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ | |||
| style="padding: 12px;" | $$\mathbf T \mathbin{\unicode{x27C7}} \mathbf g \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + (g_w - 2\tau_xg_x - 2\tau_yg_y - 2\tau_zg_z) \mathbf e_{321}$$ | |||
|} | |||
== See Also == | |||
* [[Reciprocal translation]] | |||
* [[Rotation]] | |||
* [[Reflection]] | |||
* [[Inversion]] | |||
* [[Transflection]] |
Revision as of 00:52, 8 February 2024
A translation is a proper isometry of Euclidean space.
The specific kind of motor
- $$\mathbf T = {\tau_x \mathbf e_{23} + \tau_y \mathbf e_{31} + \tau_z \mathbf e_{12} + \large\unicode{x1d7d9}}$$
performs a translation by twice the displacement vector $$\boldsymbol \tau = (\tau_x, \tau_y, \tau_z)$$ when used as an operator in the sandwich antiproduct. This can be interpreted as a rotation about the line at infinity perpendicular to the direction $$\boldsymbol \tau$$.
Exponential Form
A translation by a distance $$\delta$$ perpendicular to a unitized plane $$\mathbf g$$ can be expressed as an exponential of the plane's attitude as
- $$\mathbf T = \exp_\unicode{x27C7}\left(\dfrac{1}{2}\delta \operatorname{att}(\mathbf g)\right) = \dfrac{\delta}{2} \operatorname{att}(\mathbf g) + {\large\unicode{x1d7d9}}$$
Matrix Form
When a translation $$\mathbf T$$ is applied to a point, it is equivalent to premultiplying the point by the $$4 \times 4$$ matrix
- $$\begin{bmatrix} 1 & 0 & 0 & \tau_x \\ 0 & 1 & 0 & \tau_y \\ 0 & 0 & 1 & \tau_z \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}$$ .
Translation to Origin
A point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ is translated to the origin by the operator
- $$\mathbf T = {-\dfrac{p_{x\vphantom{y}}}{2p_w} \mathbf e_{23} - \dfrac{p_y}{2p_w} \mathbf e_{31} - \dfrac{p_{z\vphantom{y}}}{2p_w} \mathbf e_{12} + \large\unicode{x1d7d9}}$$ .
Calculation
The exact translation calculations for points, lines, and planes are shown in the following table.
Type | Translation |
---|---|
Point
$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ |
$$\mathbf T \mathbin{\unicode{x27C7}} \mathbf p \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = (p_x + 2\tau_xp_w)\mathbf e_1 + (p_y + 2\tau_yp_w)\mathbf e_2 + (p_z + 2\tau_zp_w)\mathbf e_3 + p_w\mathbf e_4$$ |
Line
$$\begin{split}\boldsymbol l =\, &l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} \\ +\, &l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}\end{split}$$ |
$$\mathbf T \mathbin{\unicode{x27C7}} \boldsymbol l \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + (l_{mx} + 2\tau_y l_{vz} - 2\tau_z l_{vy})\mathbf e_{23} + (l_{my} + 2\tau_z l_{vx} - 2\tau_x l_{vz})\mathbf e_{31} + (l_{mz} + 2\tau_x l_{vy} - 2\tau_y l_{vx})\mathbf e_{12}$$ |
Plane
$$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ |
$$\mathbf T \mathbin{\unicode{x27C7}} \mathbf g \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{T}}} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + (g_w - 2\tau_xg_x - 2\tau_yg_y - 2\tau_zg_z) \mathbf e_{321}$$ |
See Also
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 00:49, 27 August 2023 | 109 × 81 (5 KB) | Eric Lengyel (talk | contribs) |
You cannot overwrite this file.
File usage
The following page uses this file: