Reflection: Difference between revisions

From Rigid Geometric Algebra
Jump to navigation Jump to search
(Created page with "A ''reflection'' is an improper isometry of Euclidean space. When used as an operator in the sandwich antiproduct, a unitized plane $$\mathbf F = F_{gx}\mathbf e_{423} + F_{gy}\mathbf e_{431} + F_{gz}\mathbf e_{412} + F_{gw}\mathbf e_{321}$$ is a specific kind of flector that performs a reflection through $$\mathbf F$$. == Calculation == The exact reflection calculations for points, lines, and planes are shown in the following table. {| class="wikitable"...")
(No difference)

Revision as of 05:56, 15 July 2023

A reflection is an improper isometry of Euclidean space.

When used as an operator in the sandwich antiproduct, a unitized plane $$\mathbf F = F_{gx}\mathbf e_{423} + F_{gy}\mathbf e_{431} + F_{gz}\mathbf e_{412} + F_{gw}\mathbf e_{321}$$ is a specific kind of flector that performs a reflection through $$\mathbf F$$.

Calculation

The exact reflection calculations for points, lines, and planes are shown in the following table.

Type Reflection
Point

$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$

$$\begin{split}\mathbf F \mathbin{\unicode{x27C7}} \mathbf p \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{F}}} =\, &((2F_{gy}^2 + 2F_{gz}^2 - 1)p_x \,&-\, 2F_{gx} F_{gy} p_y \,&-\, 2F_{gz} F_{gx} p_z \,&-\, 2F_{gx} F_{gw} p_w)&\mathbf e_1 \\ +\, &((2F_{gz}^2 + 2F_{gx}^2 - 1)p_y \,&-\, 2F_{gy} F_{gz} p_z \,&-\, 2F_{gx} F_{gy} p_x \,&-\, 2F_{gy} F_{gw} p_w)&\mathbf e_2 \\ +\, &((2F_{gx}^2 + 2F_{gy}^2 - 1)p_z \,&-\, 2F_{gz} F_{gx} p_x \,&-\, 2F_{gy} F_{gz} p_y \,&-\, 2F_{gz} F_{gw} p_w)&\mathbf e_3 \\ +\, &p_w\mathbf e_4\end{split}$$
Line

$$\begin{split}\boldsymbol l =\, &l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} \\ +\, &l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}\end{split}$$

$$\begin{split}\mathbf F \mathbin{\unicode{x27C7}} \boldsymbol l \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{F}}} =\, &((1 - 2F_{gy}^2 - 2F_{gz}^2)l_{vx} \,&-\, 2F_{gx} F_{gy} l_{vy} \,&+\, 2F_{gz} F_{gx} l_{vz})&\mathbf e_{41} \\ +\, &((1 - 2F_{gz}^2 - 2F_{gx}^2)l_{vy} \,&-\, 2F_{gy} F_{gz} l_{vz} \,&+\, 2F_{gx} F_{gy} l_{vx})&\mathbf e_{42} \\ +\, &((1 - 2F_{gx}^2 - 2F_{gy}^2)l_{vz} \,&-\, 2F_{gz} F_{gx} l_{vx} \,&+\, 2F_{gy} F_{gz} l_{vy})&\mathbf e_{43} \\ +\, &((2F_{gy}^2 + 2F_{gz}^2 - 1)l_{mx} \,&-\, 2F_{gx} F_{gy} l_{my} \,&-\, 2F_{gz} F_{gx} l_{mz} \,&+\, 2F_{gw} F_{gy} l_{vz} \,&-\, 2F_{gw} F_{gz} l_{vy})&\mathbf e_{23} \\ +\, &((2F_{gz}^2 + 2F_{gx}^2 - 1)l_{my} \,&-\, 2F_{gy} F_{gz} l_{mz} \,&-\, 2F_{gx} F_{gy} l_{mx} \,&+\, 2F_{gw} F_{gz} l_{vx} \,&-\, 2F_{gw} F_{gx} l_{vz})&\mathbf e_{31} \\ +\, &((2F_{gx}^2 + 2F_{gy}^2 - 1)l_{mz} \,&-\, 2F_{gz} F_{gx} l_{mx} \,&-\, 2F_{gy} F_{gz} l_{my} \,&+\, 2F_{gw} F_{gx} l_{vy} \,&-\, 2F_{gw} F_{gy} l_{vx})&\mathbf e_{12}\end{split}$$
Plane

$$\mathbf h = h_x \mathbf e_{423} + h_y \mathbf e_{431} + h_z \mathbf e_{412} + h_w \mathbf e_{321}$$

$$\begin{split}\mathbf F \mathbin{\unicode{x27C7}} \mathbf h \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{F}}} =\, &((1 - 2F_{gy}^2 - 2F_{gz}^2)h_x \,&+\, 2F_{gx} F_{gy} h_y + 2F_{gz} F_{gx} h_z)&\mathbf e_{423} \\ +\, &((1 - 2F_{gz}^2 - 2F_{gx}^2)h_y \,&+\, 2F_{gy} F_{gz} h_z + 2F_{gx} F_{gy} h_x)&\mathbf e_{431} \\ +\, &((1 - 2F_{gx}^2 - 2F_{gy}^2)h_z \,&+\, 2F_{gz} F_{gx} h_x + 2F_{gy} F_{gz} h_y)&\mathbf e_{412} \\ +\, &\rlap{(2F_{gx} F_{gw} h_x + 2F_{gy} F_{gw} h_y + 2F_{gz} F_{gw} h_z - h_w)\mathbf e_{321}}\end{split}$$

See Also