Complements and Bulk and weight: Difference between pages

From Rigid Geometric Algebra
(Difference between pages)
Jump to navigation Jump to search
 
 
Line 1: Line 1:
''Complements'' are unary operations in geometric algebra that perform a specific type of dualization.
The degenerate metric of rigid geometric algebra naturally divides the components of every quantity into two groups called the ''bulk'' and the ''weight''.


Every basis element $$\mathbf u$$ has a ''right complement'', which we denote by $$\overline{\mathbf u}$$, that satisfies the equation
The bulk of an element $$\mathbf u$$ is denoted by $$\mathbf u_\unicode{x25CF}$$, and it is defined as


:$$\mathbf u \wedge \overline{\mathbf u} = {\large\unicode{x1D7D9}}$$ .
:$$\mathbf u_\unicode{x25CF} = \mathbf G \mathbf u$$,


There is also a ''left complement'', which we denote by $$\underline{\mathbf u}$$, that satisfies the equation
where $$\mathbf G$$ is the metric exomorphism matrix. The bulk consists of the components of $$\mathbf u$$ that do not have the projective basis vector $$\mathbf e_4$$ as a factor.


:$$\underline{\mathbf u} \wedge \mathbf u = {\large\unicode{x1D7D9}}$$ .
The weight is denoted by $$\mathbf u_\unicode{x25CB}$$, and it is defined as


Complements exchange full and empty dimensions, and the left and right complements can differ only by sign according to the relationship
:$$\mathbf u_\unicode{x25CB} = \mathbb G \mathbf u$$,


:$$\underline{\mathbf u} = (-1)^{\operatorname{gr}(\mathbf u)\operatorname{ag}(\mathbf u)}\,\overline{\mathbf u}$$ .
where $$\mathbb G$$ is the metric anti-exomorphism matrix. The weight consists of the components of $$\mathbf u$$ that do have the projective basis vector $$\mathbf e_4$$ as a factor.


This shows that the left and right complements of an element $$\mathbf u$$ are always the same if either its [[grade]] $$\operatorname{gr}(\mathbf u)$$ or its [[antigrade]] $$\operatorname{ag}(\mathbf u)$$ is even. If the number of dimensions is odd, then it is always true that one of these is even, so left and right complements are the same for all elements in an odd-dimensional algebra. As shown in the table below, applying the right or left complement twice can negate the operand in even numbers of dimensions. However, the right and left complements are inverse operations, so we always have $$\overline{\underline{\mathbf u}} = \mathbf u$$.
The bulk generally contains information about the position of an element relative to the origin, and the weight generally contains information about the attitude and orientation of an element. An object with zero bulk contains the origin. An object with zero weight is contained by the horizon.


The right and left complements under the [[wedge product]] are also the right and left complements under the [[antiwedge product]], so we can write
An element is [[unitized]] when the magnitude of its weight is one.


:$$\mathbf u \vee \overline{\mathbf u} = \mathbf 1$$
The following table lists the bulk and weight for the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.
:$$\underline{\mathbf u} \vee\mathbf u = \mathbf 1$$ .


To extend the complements to all elements of an algebra, we simply require that they are linear operations. For any basis elements $$\mathbf x$$ and $$\mathbf y$$, and for any scalars $$a$$ and $$b$$, we must have, for the right complement,
{| class="wikitable"
 
! Type !! Definition !! Bulk !! Weight
:$$\overline{(a\mathbf x + b\mathbf y)} = a\overline{\mathbf x} + b\overline{\mathbf y}$$ ,
|-
 
| style="padding: 12px;" | [[Magnitude]]
and similarly for the left complement.
| style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$
 
| style="padding: 12px;" | $$\mathbf z_\unicode{x25CF} = x \mathbf 1$$
The following table lists the left and right complements for all of the basis elements in the 4D geometric algebra $$\mathcal G_{3,0,1}$$.
| style="padding: 12px;" | $$\mathbf z_\unicode{x25CB} = y {\large\unicode{x1d7d9}}$$
 
|-
[[Image:Complements.svg|720px]]
| style="padding: 12px;" | [[Point]]
| style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
| style="padding: 12px;" | $$\mathbf p_\unicode{x25CF} = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3$$
| style="padding: 12px;" | $$\mathbf p_\unicode{x25CB} = p_w \mathbf e_4$$
|-
| style="padding: 12px;" | [[Line]]
| style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
| style="padding: 12px;" | $$\boldsymbol l_\unicode{x25CF} = l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
| style="padding: 12px;" | $$\boldsymbol l_\unicode{x25CB} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43}$$
|-
| style="padding: 12px;" | [[Plane]]
| style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf g_\unicode{x25CF} = g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf g_\unicode{x25CB} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412}$$
|-
| style="padding: 12px;" | [[Motor]]
| style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\mathbf Q_\unicode{x25CF} = Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\mathbf Q_\unicode{x25CB} = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}}$$
|-
| style="padding: 12px;" | [[Flector]]
| style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf F_\unicode{x25CF} = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf F_\unicode{x25CB} = F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412}$$
|}


== See Also ==
== See Also ==


* [[Attitude]]
* [[Geometric norm]]
* [[Unitization]]
* [[Complements]]
* [[Duals]]
* [[Duals]]
* [[Grade and antigrade]]
* [[Bulk and weight]]
* [[Reverses]]
* [[Duality]]

Revision as of 06:27, 12 April 2024

The degenerate metric of rigid geometric algebra naturally divides the components of every quantity into two groups called the bulk and the weight.

The bulk of an element $$\mathbf u$$ is denoted by $$\mathbf u_\unicode{x25CF}$$, and it is defined as

$$\mathbf u_\unicode{x25CF} = \mathbf G \mathbf u$$,

where $$\mathbf G$$ is the metric exomorphism matrix. The bulk consists of the components of $$\mathbf u$$ that do not have the projective basis vector $$\mathbf e_4$$ as a factor.

The weight is denoted by $$\mathbf u_\unicode{x25CB}$$, and it is defined as

$$\mathbf u_\unicode{x25CB} = \mathbb G \mathbf u$$,

where $$\mathbb G$$ is the metric anti-exomorphism matrix. The weight consists of the components of $$\mathbf u$$ that do have the projective basis vector $$\mathbf e_4$$ as a factor.

The bulk generally contains information about the position of an element relative to the origin, and the weight generally contains information about the attitude and orientation of an element. An object with zero bulk contains the origin. An object with zero weight is contained by the horizon.

An element is unitized when the magnitude of its weight is one.

The following table lists the bulk and weight for the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.

Type Definition Bulk Weight
Magnitude $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ $$\mathbf z_\unicode{x25CF} = x \mathbf 1$$ $$\mathbf z_\unicode{x25CB} = y {\large\unicode{x1d7d9}}$$
Point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ $$\mathbf p_\unicode{x25CF} = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3$$ $$\mathbf p_\unicode{x25CB} = p_w \mathbf e_4$$
Line $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\boldsymbol l_\unicode{x25CF} = l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\boldsymbol l_\unicode{x25CB} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43}$$
Plane $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ $$\mathbf g_\unicode{x25CF} = g_w \mathbf e_{321}$$ $$\mathbf g_\unicode{x25CB} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412}$$
Motor $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\mathbf Q_\unicode{x25CF} = Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\mathbf Q_\unicode{x25CB} = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}}$$
Flector $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ $$\mathbf F_\unicode{x25CF} = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{gw} \mathbf e_{321}$$ $$\mathbf F_\unicode{x25CB} = F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412}$$

See Also