Metrics: Difference between revisions

From Rigid Geometric Algebra
Jump to navigation Jump to search
(Created page with "The ''metric'' used in the 4D rigid geometric algebra over 3D Euclidean space is the $$4 \times 4$$ matrix $$\mathfrak g$$ given by :$$\mathfrak g = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\\end{bmatrix}$$ . The ''metric exomorphism matrix'' $$\mathbf G$$, often just called the "metric" itself, corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below. 420px The ''metri...")
(No difference)

Revision as of 01:48, 13 April 2024

The metric used in the 4D rigid geometric algebra over 3D Euclidean space is the $$4 \times 4$$ matrix $$\mathfrak g$$ given by

$$\mathfrak g = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\\end{bmatrix}$$ .

The metric exomorphism matrix $$\mathbf G$$, often just called the "metric" itself, corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below.

The metric antiexomorphism matrix $$\mathbb G$$, often called the "antimetric", corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below.