Metrics and Duals: Difference between pages

From Rigid Geometric Algebra
(Difference between pages)
Jump to navigation Jump to search
No edit summary
 
No edit summary
 
Line 1: Line 1:
The ''metric'' used in the 4D rigid geometric algebra over 3D Euclidean space is the $$4 \times 4$$ matrix $$\mathfrak g$$ given by
Every object in projective geometric algebra has two duals derived from the metric tensor, called the ''metric dual'' and ''metric antidual''.


:$$\mathfrak g = \begin{bmatrix}
== Dual ==
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\\end{bmatrix}$$ .


The ''metric exomorphism matrix'' $$\mathbf G$$, often just called the "metric" itself, corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below.
The ''metric dual'' or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as


[[Image:metric-rga-3d.svg|420px]]
:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,


The ''metric antiexomorphism matrix'' $$\mathbb G$$, often called the "antimetric", corresponding to the metric $$\mathfrak g$$ is the $$16 \times 16$$ matrix shown below.
where $$\mathbf G$$ is the $$16 \times 16$$ [[metric exomorphism matrix]]. In projective geometric algebra, this dual is also called the ''bulk dual'' because it is the [[complement]] of the bulk components, as expressed by


[[Image:antimetric-rga-3d.svg|420px]]
:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf u_\unicode{x25CF}}$$ .


The product of the metric exomorphism matrix $$\mathbf G$$ and metric antiexomorphism matrix $$\mathbb G$$ for any metric $$\mathfrak g$$ is always equal to the $$16 \times 16$$ identity matrix times the determinant of $$\mathfrak g$$. That is, $$\mathbf G \mathbb G = \det(\mathfrak g) \mathbf I$$.
The bulk dual satisfies the following identity based on the [[geometric product]]:


The metric and antimetric determine [[bulk and weight]], [[duals]], [[dot products]], and [[geometric products]].
:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \tilde{\mathbf u} \mathbin{\unicode{x27D1}} {\large\unicode{x1D7D9}}$$ .


== See Also ==
== Antidual ==
 
The ''metric antidual'' or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,
 
where $$\mathbb G$$ is the $$16 \times 16$$ [[metric antiexomorphism matrix]]. In projective geometric algebra, this dual is also called the ''weight dual'' because it is the [[complement]] of the weight components, as expressed by
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbf u_\unicode{x25CB}}$$ .
 
The weight dual satisfies the following identity based on the [[geometric antiproduct]]:
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \smash{\mathbf{\underset{\Large\unicode{x7E}}{u}}} \mathbin{\unicode{x27C7}} \mathbf 1$$ .
 
== Duals of Basis Elements ==
 
The following table lists the bulk and weight duals for all of the basis elements in the 4D geometric algebra $$\mathcal G_{3,0,1}$$.
 
[[Image:Duals.svg|720px]]
 
== Duals of Geometries ==
 
The bulk duals and weight duals of geometries in the 4D rigid geometric algebra are listed in the following table.


* [[Bulk and weight]]
{| class="wikitable"
* [[Duals]]
! Type !! Bulk Dual !! Weight Dual
* [[Dot products]]
|-
| style="padding: 12px;" | [[Point]]
| style="padding: 12px;" | $$\mathbf p^\unicode["segoe ui symbol"]{x2605} = p_x \mathbf e_{423} + p_y \mathbf e_{431} + p_z \mathbf e_{412}$$
| style="padding: 12px;" | $$\mathbf p^\unicode["segoe ui symbol"]{x2606} = p_w \mathbf e_{321}$$
|-
| style="padding: 12px;" | [[Line]]
| style="padding: 12px;" | $$\boldsymbol l^\unicode["segoe ui symbol"]{x2605} = -l_{mx} \mathbf e_{41} - l_{my} \mathbf e_{42} - l_{mz} \mathbf e_{43}$$
| style="padding: 12px;" | $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606} = -l_{vx} \mathbf e_{23} - l_{vy} \mathbf e_{31} - l_{vz} \mathbf e_{12}$$
|-
| style="padding: 12px;" | [[Plane]]
| style="padding: 12px;" | $$\mathbf g^\unicode["segoe ui symbol"]{x2605} = -g_w \mathbf e_4$$
| style="padding: 12px;" | $$\mathbf g^\unicode["segoe ui symbol"]{x2606} = -g_x \mathbf e_1 - g_y \mathbf e_2 - g_z \mathbf e_3$$
|}


== In the Book ==
== In the Book ==


* The metric and antimetric are introduced in Section 2.8.
* Duals are introduced in Section 2.12.
 
== See Also ==
 
* [[Complements]]
* [[Bulk and weight]]

Revision as of 01:33, 12 May 2024

Every object in projective geometric algebra has two duals derived from the metric tensor, called the metric dual and metric antidual.

Dual

The metric dual or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as

$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,

where $$\mathbf G$$ is the $$16 \times 16$$ metric exomorphism matrix. In projective geometric algebra, this dual is also called the bulk dual because it is the complement of the bulk components, as expressed by

$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf u_\unicode{x25CF}}$$ .

The bulk dual satisfies the following identity based on the geometric product:

$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \tilde{\mathbf u} \mathbin{\unicode{x27D1}} {\large\unicode{x1D7D9}}$$ .

Antidual

The metric antidual or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as

$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,

where $$\mathbb G$$ is the $$16 \times 16$$ metric antiexomorphism matrix. In projective geometric algebra, this dual is also called the weight dual because it is the complement of the weight components, as expressed by

$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbf u_\unicode{x25CB}}$$ .

The weight dual satisfies the following identity based on the geometric antiproduct:

$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \smash{\mathbf{\underset{\Large\unicode{x7E}}{u}}} \mathbin{\unicode{x27C7}} \mathbf 1$$ .

Duals of Basis Elements

The following table lists the bulk and weight duals for all of the basis elements in the 4D geometric algebra $$\mathcal G_{3,0,1}$$.

Duals of Geometries

The bulk duals and weight duals of geometries in the 4D rigid geometric algebra are listed in the following table.

Type Bulk Dual Weight Dual
Point $$\mathbf p^\unicode["segoe ui symbol"]{x2605} = p_x \mathbf e_{423} + p_y \mathbf e_{431} + p_z \mathbf e_{412}$$ $$\mathbf p^\unicode["segoe ui symbol"]{x2606} = p_w \mathbf e_{321}$$
Line $$\boldsymbol l^\unicode["segoe ui symbol"]{x2605} = -l_{mx} \mathbf e_{41} - l_{my} \mathbf e_{42} - l_{mz} \mathbf e_{43}$$ $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606} = -l_{vx} \mathbf e_{23} - l_{vy} \mathbf e_{31} - l_{vz} \mathbf e_{12}$$
Plane $$\mathbf g^\unicode["segoe ui symbol"]{x2605} = -g_w \mathbf e_4$$ $$\mathbf g^\unicode["segoe ui symbol"]{x2606} = -g_x \mathbf e_1 - g_y \mathbf e_2 - g_z \mathbf e_3$$

In the Book

  • Duals are introduced in Section 2.12.

See Also