Duals and Bulk and weight: Difference between pages

From Rigid Geometric Algebra
(Difference between pages)
Jump to navigation Jump to search
No edit summary
 
No edit summary
 
Line 1: Line 1:
Every object in projective geometric algebra has two duals derived from the metric tensor, called the ''metric dual'' and ''metric antidual''.
The degenerate metric of rigid geometric algebra naturally divides the components of every quantity into two groups called the ''bulk'' and the ''weight''.


== Dual ==
The bulk of an element $$\mathbf u$$ is denoted by $$\mathbf u_\unicode["segoe ui symbol"]{x25CF}$$, and it is defined as


The ''metric dual'' or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as
:$$\mathbf u_\unicode["segoe ui symbol"]{x25CF} = \mathbf G \mathbf u$$,


:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,
where $$\mathbf G$$ is the [[metric exomorphism matrix]]. The bulk consists of the components of $$\mathbf u$$ that do not have the projective basis vector $$\mathbf e_4$$ as a factor.


where $$\mathbf G$$ is the $$16 \times 16$$ metric exomorphism matrix. In projective geometric algebra, this dual is also called the ''bulk dual'' because it is the [[complement]] of the bulk components, as expressed by
The weight is denoted by $$\mathbf u_\unicode["segoe ui symbol"]{x25CB}$$, and it is defined as


:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf u_\unicode{x25CF}}$$ .
:$$\mathbf u_\unicode["segoe ui symbol"]{x25CB} = \mathbb G \mathbf u$$,


The bulk dual satisfies the following identity based on the [[geometric product]]:
where $$\mathbb G$$ is the [[metric antiexomorphism matrix]]. The weight consists of the components of $$\mathbf u$$ that do have the projective basis vector $$\mathbf e_4$$ as a factor.


:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \tilde{\mathbf u} \mathbin{\unicode{x27D1}} {\large\unicode{x1D7D9}}$$ .
The bulk generally contains information about the position of an element relative to the origin, and the weight generally contains information about the attitude and orientation of an element. An object with zero bulk contains the origin. An object with zero weight is contained by the horizon.


== Antidual ==
An element is [[unitized]] when the magnitude of its weight is one.


The ''metric antidual'' or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as
The following table lists the bulk and weight for the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.


:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,
{| class="wikitable"
! Type !! Definition !! Bulk !! Weight
|-
| style="padding: 12px;" | [[Magnitude]]
| style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$
| style="padding: 12px;" | $$\mathbf z_\unicode["segoe ui symbol"]{x25CF} = x \mathbf 1$$
| style="padding: 12px;" | $$\mathbf z_\unicode["segoe ui symbol"]{x25CB} = y {\large\unicode{x1d7d9}}$$
|-
| style="padding: 12px;" | [[Point]]
| style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
| style="padding: 12px;" | $$\mathbf p_\unicode["segoe ui symbol"]{x25CF} = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3$$
| style="padding: 12px;" | $$\mathbf p_\unicode["segoe ui symbol"]{x25CB} = p_w \mathbf e_4$$
|-
| style="padding: 12px;" | [[Line]]
| style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
| style="padding: 12px;" | $$\boldsymbol l_\unicode["segoe ui symbol"]{x25CF} = l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
| style="padding: 12px;" | $$\boldsymbol l_\unicode["segoe ui symbol"]{x25CB} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43}$$
|-
| style="padding: 12px;" | [[Plane]]
| style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf g_\unicode["segoe ui symbol"]{x25CF} = g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf g_\unicode["segoe ui symbol"]{x25CB} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412}$$
|-
| style="padding: 12px;" | [[Motor]]
| style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\mathbf Q_\unicode["segoe ui symbol"]{x25CF} = Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\mathbf Q_\unicode["segoe ui symbol"]{x25CB} = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}}$$
|-
| style="padding: 12px;" | [[Flector]]
| style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf F_\unicode["segoe ui symbol"]{x25CF} = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf F_\unicode["segoe ui symbol"]{x25CB} = F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412}$$
|}


where $$\mathbb G$$ is the $$16 \times 16$$ metric antiexomorphism matrix. In projective geometric algebra, this dual is also called the ''weight dual'' because it is the [[complement]] of the weight components, as expressed by
== In the Book ==


:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbf u_\unicode{x25CB}}$$ .
* Bulk and weight are introduced in Section 2.8.3.
 
The weight dual satisfies the following identity based on the [[geometric antiproduct]]:
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \smash{\mathbf{\underset{\Large\unicode{x7E}}{u}}} \mathbin{\unicode{x27C7}} \mathbf 1$$ .


== See Also ==
== See Also ==


* [[Attitude]]
* [[Geometric norm]]
* [[Unitization]]
* [[Complements]]
* [[Complements]]
* [[Bulk and weight]]
* [[Duals]]

Latest revision as of 01:16, 8 July 2024

The degenerate metric of rigid geometric algebra naturally divides the components of every quantity into two groups called the bulk and the weight.

The bulk of an element $$\mathbf u$$ is denoted by $$\mathbf u_\unicode["segoe ui symbol"]{x25CF}$$, and it is defined as

$$\mathbf u_\unicode["segoe ui symbol"]{x25CF} = \mathbf G \mathbf u$$,

where $$\mathbf G$$ is the metric exomorphism matrix. The bulk consists of the components of $$\mathbf u$$ that do not have the projective basis vector $$\mathbf e_4$$ as a factor.

The weight is denoted by $$\mathbf u_\unicode["segoe ui symbol"]{x25CB}$$, and it is defined as

$$\mathbf u_\unicode["segoe ui symbol"]{x25CB} = \mathbb G \mathbf u$$,

where $$\mathbb G$$ is the metric antiexomorphism matrix. The weight consists of the components of $$\mathbf u$$ that do have the projective basis vector $$\mathbf e_4$$ as a factor.

The bulk generally contains information about the position of an element relative to the origin, and the weight generally contains information about the attitude and orientation of an element. An object with zero bulk contains the origin. An object with zero weight is contained by the horizon.

An element is unitized when the magnitude of its weight is one.

The following table lists the bulk and weight for the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.

Type Definition Bulk Weight
Magnitude $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ $$\mathbf z_\unicode["segoe ui symbol"]{x25CF} = x \mathbf 1$$ $$\mathbf z_\unicode["segoe ui symbol"]{x25CB} = y {\large\unicode{x1d7d9}}$$
Point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ $$\mathbf p_\unicode["segoe ui symbol"]{x25CF} = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3$$ $$\mathbf p_\unicode["segoe ui symbol"]{x25CB} = p_w \mathbf e_4$$
Line $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\boldsymbol l_\unicode["segoe ui symbol"]{x25CF} = l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\boldsymbol l_\unicode["segoe ui symbol"]{x25CB} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43}$$
Plane $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ $$\mathbf g_\unicode["segoe ui symbol"]{x25CF} = g_w \mathbf e_{321}$$ $$\mathbf g_\unicode["segoe ui symbol"]{x25CB} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412}$$
Motor $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\mathbf Q_\unicode["segoe ui symbol"]{x25CF} = Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\mathbf Q_\unicode["segoe ui symbol"]{x25CB} = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}}$$
Flector $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ $$\mathbf F_\unicode["segoe ui symbol"]{x25CF} = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{gw} \mathbf e_{321}$$ $$\mathbf F_\unicode["segoe ui symbol"]{x25CB} = F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412}$$

In the Book

  • Bulk and weight are introduced in Section 2.8.3.

See Also