Dot products and Bulk and weight: Difference between pages

From Rigid Geometric Algebra
(Difference between pages)
Jump to navigation Jump to search
No edit summary
 
No edit summary
 
Line 1: Line 1:
The ''dot product'' is the inner product in geometric algebra. The dot product and its antiproduct are important for the calculation of angles and [[Geometric norm | norms]].
The degenerate metric of rigid geometric algebra naturally divides the components of every quantity into two groups called the ''bulk'' and the ''weight''.


== Dot Product ==
The bulk of an element $$\mathbf u$$ is denoted by $$\mathbf u_\unicode["segoe ui symbol"]{x25CF}$$, and it is defined as


The dot product between two elements $$\mathbf a$$ and $$\mathbf b$$ is written $$\mathbf a \mathbin{\unicode{x25CF}} \mathbf b$$ and read "$$\mathbf a$$ dot $$\mathbf b$$". The dot product is defined as
:$$\mathbf u_\unicode["segoe ui symbol"]{x25CF} = \mathbf G \mathbf u$$,


:$$\mathbf a \mathbin{\unicode{x25CF}} \mathbf b = \mathbf a^{\mathrm T}\mathbf G \mathbf b$$ ,
where $$\mathbf G$$ is the [[metric exomorphism matrix]]. The bulk consists of the components of $$\mathbf u$$ that do not have the projective basis vector $$\mathbf e_4$$ as a factor.


where $$\mathbf a$$ and $$\mathbf b$$ are treated as generic vectors over the 16 basis elements of the algebra, $$\mathbf G$$ is the $$16 \times 16$$ [[metric exomorphism matrix]], and we are using ordinary matrix multiplication.
The weight is denoted by $$\mathbf u_\unicode["segoe ui symbol"]{x25CB}$$, and it is defined as


The dot product between two elements $$\mathbf a$$ and $$\mathbf b$$ is nonzero only if they have the same grade.
:$$\mathbf u_\unicode["segoe ui symbol"]{x25CB} = \mathbb G \mathbf u$$,


== Antidot Product ==
where $$\mathbb G$$ is the [[metric antiexomorphism matrix]]. The weight consists of the components of $$\mathbf u$$ that do have the projective basis vector $$\mathbf e_4$$ as a factor.


The antidot product between elements $$\mathbf a$$ and $$\mathbf b$$ is written $$\mathbf a \mathbin{\unicode{x25CB}} \mathbf b$$ and is read as "$$\mathbf a$$ antidot $$\mathbf b$$". The antidot product is defined as
The bulk generally contains information about the position of an element relative to the origin, and the weight generally contains information about the attitude and orientation of an element. An object with zero bulk contains the origin. An object with zero weight is contained by the horizon.


:$$\mathbf a \mathbin{\unicode{x25CB}} \mathbf b = \mathbf a^{\mathrm T}\mathbb G \mathbf b$$ ,
An element is [[unitized]] when the magnitude of its weight is one.


where, again, $$\mathbf a$$ and $$\mathbf b$$ are treated as generic vectors over the 16 basis elements of the algebra, but now $$\mathbb G$$ is the $$16 \times 16$$ [[metric antiexomorphism matrix]].
The following table lists the bulk and weight for the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.


The antidot product can also be derived from the dot product using the De Morgan relationship
{| class="wikitable"
! Type !! Definition !! Bulk !! Weight
|-
| style="padding: 12px;" | [[Magnitude]]
| style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$
| style="padding: 12px;" | $$\mathbf z_\unicode["segoe ui symbol"]{x25CF} = x \mathbf 1$$
| style="padding: 12px;" | $$\mathbf z_\unicode["segoe ui symbol"]{x25CB} = y {\large\unicode{x1d7d9}}$$
|-
| style="padding: 12px;" | [[Point]]
| style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
| style="padding: 12px;" | $$\mathbf p_\unicode["segoe ui symbol"]{x25CF} = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3$$
| style="padding: 12px;" | $$\mathbf p_\unicode["segoe ui symbol"]{x25CB} = p_w \mathbf e_4$$
|-
| style="padding: 12px;" | [[Line]]
| style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
| style="padding: 12px;" | $$\boldsymbol l_\unicode["segoe ui symbol"]{x25CF} = l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
| style="padding: 12px;" | $$\boldsymbol l_\unicode["segoe ui symbol"]{x25CB} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43}$$
|-
| style="padding: 12px;" | [[Plane]]
| style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf g_\unicode["segoe ui symbol"]{x25CF} = g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf g_\unicode["segoe ui symbol"]{x25CB} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412}$$
|-
| style="padding: 12px;" | [[Motor]]
| style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\mathbf Q_\unicode["segoe ui symbol"]{x25CF} = Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\mathbf Q_\unicode["segoe ui symbol"]{x25CB} = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}}$$
|-
| style="padding: 12px;" | [[Flector]]
| style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf F_\unicode["segoe ui symbol"]{x25CF} = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\mathbf F_\unicode["segoe ui symbol"]{x25CB} = F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412}$$
|}


:$$\mathbf a \mathbin{\unicode{x25CB}} \mathbf b = \overline{\underline{\mathbf a} \mathbin{\unicode{x25CF}} \underline{\mathbf b}}$$ .
== In the Book ==
 
== Table ==
 
The following table shows the dot product and antidot product of each basis element $$\mathbf u$$ in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$ with itself. All other dot products and antidot products are zero.
 
 
[[Image:Dots.svg|720px]]


* Bulk and weight are introduced in Section 2.8.3.


== See Also ==
== See Also ==


* [[Geometric products]]
* [[Attitude]]
* [[Wedge products]]
* [[Geometric norm]]
* [[Unitization]]
* [[Complements]]
* [[Duals]]

Latest revision as of 01:16, 8 July 2024

The degenerate metric of rigid geometric algebra naturally divides the components of every quantity into two groups called the bulk and the weight.

The bulk of an element $$\mathbf u$$ is denoted by $$\mathbf u_\unicode["segoe ui symbol"]{x25CF}$$, and it is defined as

$$\mathbf u_\unicode["segoe ui symbol"]{x25CF} = \mathbf G \mathbf u$$,

where $$\mathbf G$$ is the metric exomorphism matrix. The bulk consists of the components of $$\mathbf u$$ that do not have the projective basis vector $$\mathbf e_4$$ as a factor.

The weight is denoted by $$\mathbf u_\unicode["segoe ui symbol"]{x25CB}$$, and it is defined as

$$\mathbf u_\unicode["segoe ui symbol"]{x25CB} = \mathbb G \mathbf u$$,

where $$\mathbb G$$ is the metric antiexomorphism matrix. The weight consists of the components of $$\mathbf u$$ that do have the projective basis vector $$\mathbf e_4$$ as a factor.

The bulk generally contains information about the position of an element relative to the origin, and the weight generally contains information about the attitude and orientation of an element. An object with zero bulk contains the origin. An object with zero weight is contained by the horizon.

An element is unitized when the magnitude of its weight is one.

The following table lists the bulk and weight for the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.

Type Definition Bulk Weight
Magnitude $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ $$\mathbf z_\unicode["segoe ui symbol"]{x25CF} = x \mathbf 1$$ $$\mathbf z_\unicode["segoe ui symbol"]{x25CB} = y {\large\unicode{x1d7d9}}$$
Point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ $$\mathbf p_\unicode["segoe ui symbol"]{x25CF} = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3$$ $$\mathbf p_\unicode["segoe ui symbol"]{x25CB} = p_w \mathbf e_4$$
Line $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\boldsymbol l_\unicode["segoe ui symbol"]{x25CF} = l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\boldsymbol l_\unicode["segoe ui symbol"]{x25CB} = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43}$$
Plane $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ $$\mathbf g_\unicode["segoe ui symbol"]{x25CF} = g_w \mathbf e_{321}$$ $$\mathbf g_\unicode["segoe ui symbol"]{x25CB} = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412}$$
Motor $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\mathbf Q_\unicode["segoe ui symbol"]{x25CF} = Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\mathbf Q_\unicode["segoe ui symbol"]{x25CB} = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}}$$
Flector $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ $$\mathbf F_\unicode["segoe ui symbol"]{x25CF} = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{gw} \mathbf e_{321}$$ $$\mathbf F_\unicode["segoe ui symbol"]{x25CB} = F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412}$$

In the Book

  • Bulk and weight are introduced in Section 2.8.3.

See Also