Geometric norm: Difference between revisions
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
== Bulk Norm == | == Bulk Norm == | ||
The ''bulk norm'' of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode{x25CF}$$, is the magnitude of its [[bulk]] components. It can be calculated by taking the square root of the [[dot product]] of $$\mathbf u$$ with itself: | The ''bulk norm'' of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CF}$$, is the magnitude of its [[bulk]] components. It can be calculated by taking the square root of the [[dot product]] of $$\mathbf u$$ with itself: | ||
:$$\left\Vert\mathbf u\right\Vert_\unicode{x25CF} = \sqrt{\mathbf u \mathbin{\unicode{ | :$$\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2022}} \mathbf u}$$ . | ||
An element that has a bulk norm of '''1''' is said to be ''bulk normalized''. | An element that has a bulk norm of '''1''' is said to be ''bulk normalized''. | ||
Line 18: | Line 18: | ||
| style="padding: 12px;" | [[Magnitude]] | | style="padding: 12px;" | [[Magnitude]] | ||
| style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ | | style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf z\right\Vert_\unicode{x25CF} = |x|$$ | | style="padding: 12px;" | $$\left\Vert\mathbf z\right\Vert_\unicode["segoe ui symbol"]{x25CF} = |x|$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Point]] | | style="padding: 12px;" | [[Point]] | ||
| style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | | style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf p\right\Vert_\unicode{x25CF} = \sqrt{p_x^2 + p_y^2 + p_z^2}$$ | | style="padding: 12px;" | $$\left\Vert\mathbf p\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{p_x^2 + p_y^2 + p_z^2}$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Line]] | | style="padding: 12px;" | [[Line]] | ||
| style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ | | style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ | ||
| style="padding: 12px;" | $$\left\Vert\boldsymbol l\right\Vert_\unicode{x25CF} = \sqrt{l_{mx}^2 + l_{my}^2 + l_{mz}^2}$$ | | style="padding: 12px;" | $$\left\Vert\boldsymbol l\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{l_{mx}^2 + l_{my}^2 + l_{mz}^2}$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Plane]] | | style="padding: 12px;" | [[Plane]] | ||
| style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ | | style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf g\right\Vert_\unicode{x25CF} = |g_w|$$ | | style="padding: 12px;" | $$\left\Vert\mathbf g\right\Vert_\unicode["segoe ui symbol"]{x25CF} = |g_w|$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Motor]] | | style="padding: 12px;" | [[Motor]] | ||
| style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ | | style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf Q\right\Vert_\unicode{x25CF} = \sqrt{Q_{mx}^2 + Q_{my}^2 + Q_{mz}^2 + Q_{mw}^2}$$ | | style="padding: 12px;" | $$\left\Vert\mathbf Q\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{Q_{mx}^2 + Q_{my}^2 + Q_{mz}^2 + Q_{mw}^2}$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Flector]] | | style="padding: 12px;" | [[Flector]] | ||
| style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ | | style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf F\right\Vert_\unicode{x25CF} = \sqrt{F_{px}^2 + F_{py}^2 + F_{pz}^2 + F_{gw}^2}$$ | | style="padding: 12px;" | $$\left\Vert\mathbf F\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{F_{px}^2 + F_{py}^2 + F_{pz}^2 + F_{gw}^2}$$ | ||
|} | |} | ||
== Weight Norm == | == Weight Norm == | ||
The ''weight norm'' of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode{x25CB}$$, is the magnitude of its [[weight]] components. It can be calculated by taking the square root of the [[antidot product]] of $$\mathbf u$$ with itself: | The ''weight norm'' of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB}$$, is the magnitude of its [[weight]] components. It can be calculated by taking the square root of the [[antidot product]] of $$\mathbf u$$ with itself: | ||
:$$\left\Vert\mathbf u\right\Vert_\unicode{x25CB} = \sqrt{\mathbf u \mathbin{\unicode{ | :$$\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB} = \sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2218}} \mathbf u}$$ . | ||
(Note that the square root in this case is taken with respect to the geometric antiproduct.) | (Note that the square root in this case is taken with respect to the geometric antiproduct.) | ||
Line 58: | Line 58: | ||
| style="padding: 12px;" | [[Magnitude]] | | style="padding: 12px;" | [[Magnitude]] | ||
| style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ | | style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf z\right\Vert_\unicode{x25CB} = |y|{\large\unicode{x1D7D9}}$$ | | style="padding: 12px;" | $$\left\Vert\mathbf z\right\Vert_\unicode["segoe ui symbol"]{x25CB} = |y|{\large\unicode{x1D7D9}}$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Point]] | | style="padding: 12px;" | [[Point]] | ||
| style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | | style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf p\right\Vert_\unicode{x25CB} = |p_w|{\large\unicode{x1D7D9}}$$ | | style="padding: 12px;" | $$\left\Vert\mathbf p\right\Vert_\unicode["segoe ui symbol"]{x25CB} = |p_w|{\large\unicode{x1D7D9}}$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Line]] | | style="padding: 12px;" | [[Line]] | ||
| style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ | | style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ | ||
| style="padding: 12px;" | $$\left\Vert\boldsymbol l\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{l_{vx}^2 + l_{vy}^2 + l_{vz}^2}$$ | | style="padding: 12px;" | $$\left\Vert\boldsymbol l\right\Vert_\unicode["segoe ui symbol"]{x25CB} = {\large\unicode{x1D7D9}}\sqrt{l_{vx}^2 + l_{vy}^2 + l_{vz}^2}$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Plane]] | | style="padding: 12px;" | [[Plane]] | ||
| style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{234} + g_y \mathbf e_{314} + g_z \mathbf e_{124} + g_w \mathbf e_{321}$$ | | style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{234} + g_y \mathbf e_{314} + g_z \mathbf e_{124} + g_w \mathbf e_{321}$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf g\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{g_x^2 + g_y^2 + g_z^2}$$ | | style="padding: 12px;" | $$\left\Vert\mathbf g\right\Vert_\unicode["segoe ui symbol"]{x25CB} = {\large\unicode{x1D7D9}}\sqrt{g_x^2 + g_y^2 + g_z^2}$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Motor]] | | style="padding: 12px;" | [[Motor]] | ||
| style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ | | style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf Q\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{Q_{vx}^2 + Q_{vy}^2 + Q_{vz}^2 + Q_{vw}^2}$$ | | style="padding: 12px;" | $$\left\Vert\mathbf Q\right\Vert_\unicode["segoe ui symbol"]{x25CB} = {\large\unicode{x1D7D9}}\sqrt{Q_{vx}^2 + Q_{vy}^2 + Q_{vz}^2 + Q_{vw}^2}$$ | ||
|- | |- | ||
| style="padding: 12px;" | [[Flector]] | | style="padding: 12px;" | [[Flector]] | ||
| style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ | | style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ | ||
| style="padding: 12px;" | $$\left\Vert\mathbf F\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{F_{gx}^2 + F_{gy}^2 + F_{gz}^2 + F_{pw}^2}$$ | | style="padding: 12px;" | $$\left\Vert\mathbf F\right\Vert_\unicode["segoe ui symbol"]{x25CB} = {\large\unicode{x1D7D9}}\sqrt{F_{gx}^2 + F_{gy}^2 + F_{gz}^2 + F_{pw}^2}$$ | ||
|} | |} | ||
Line 85: | Line 85: | ||
The bulk norm and weight norm are summed to construct the ''geometric norm'' given by | The bulk norm and weight norm are summed to construct the ''geometric norm'' given by | ||
:$$\left\Vert\mathbf u\right\Vert = \left\Vert\mathbf u\right\Vert_\unicode{x25CF} + \left\Vert\mathbf u\right\Vert_\unicode{x25CB} = \sqrt{\mathbf u \mathbin{\unicode{ | :$$\left\Vert\mathbf u\right\Vert = \left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CF} + \left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB} = \sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2022}} \mathbf u} + \sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2218}} \mathbf u}$$ . | ||
This quantity is the sum of a scalar $$a\mathbf 1$$ and antiscalar $$b{\large\unicode{x1D7D9}}$$ representing a ''homogeneous magnitude'' that itself has a bulk and a weight. Its bulk norm is simply the magnitude of its scalar part, and its weight norm is simply the magnitude of its antiscalar part. The geometric norm is idempotent because | This quantity is the sum of a scalar $$a\mathbf 1$$ and antiscalar $$b{\large\unicode{x1D7D9}}$$ representing a ''homogeneous magnitude'' that itself has a bulk and a weight. Its bulk norm is simply the magnitude of its scalar part, and its weight norm is simply the magnitude of its antiscalar part. The geometric norm is idempotent because | ||
Line 93: | Line 93: | ||
Like all other homogeneous quantities, the magnitude given by the geometric norm is [[unitized]] by dividing by its weight norm. The unitized magnitude of an element $$\mathbf u$$ is given by | Like all other homogeneous quantities, the magnitude given by the geometric norm is [[unitized]] by dividing by its weight norm. The unitized magnitude of an element $$\mathbf u$$ is given by | ||
:$$\widehat{\left\Vert\mathbf u\right\Vert} = \dfrac{\left\Vert\mathbf u\right\Vert}{\left\Vert\mathbf u\right\Vert_\unicode{x25CB}} = \dfrac{\left\Vert\mathbf u\right\Vert_\unicode{x25CF}}{\left\Vert\mathbf u\right\Vert_\unicode{x25CB}} + {\large\unicode{x1D7D9}} = \dfrac{\sqrt{\mathbf u \mathbin{\unicode{ | :$$\widehat{\left\Vert\mathbf u\right\Vert} = \dfrac{\left\Vert\mathbf u\right\Vert}{\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB}} = \dfrac{\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CF}}{\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB}} + {\large\unicode{x1D7D9}} = \dfrac{\sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2022}} \mathbf u}}{\sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2218}} \mathbf u}} + {\large\unicode{x1D7D9}}$$ . | ||
The following table lists the unitized geometric norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$ after dropping the constant $${\large\unicode{x1D7D9}}$$ term. | The following table lists the unitized geometric norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$ after dropping the constant $${\large\unicode{x1D7D9}}$$ term. | ||
Line 136: | Line 136: | ||
| style="padding: 12px;" | Half the distance that the origin is moved by the [[flector]] $$\mathbf F$$. | | style="padding: 12px;" | Half the distance that the origin is moved by the [[flector]] $$\mathbf F$$. | ||
|} | |} | ||
== In the Book == | |||
* The geometric norm is discussed in Section 2.10. | |||
== See Also == | == See Also == | ||
* [[Geometric | * [[Geometric constraint]] |
Latest revision as of 01:24, 8 July 2024
The geometric norm is a measure of the magnitude of an element. It has two components called the bulk norm and the weight norm.
For points, lines, and planes, the geometric norm is equal to the shortest Euclidean distance between the geometry and the origin. For motors and flectors, the geometric norm is equal to half the distance that the origin is moved by the isometry operator.
Bulk Norm
The bulk norm of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CF}$$, is the magnitude of its bulk components. It can be calculated by taking the square root of the dot product of $$\mathbf u$$ with itself:
- $$\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2022}} \mathbf u}$$ .
An element that has a bulk norm of 1 is said to be bulk normalized.
The following table lists the bulk norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.
Type | Definition | Bulk Norm |
---|---|---|
Magnitude | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ | $$\left\Vert\mathbf z\right\Vert_\unicode["segoe ui symbol"]{x25CF} = |x|$$ |
Point | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | $$\left\Vert\mathbf p\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{p_x^2 + p_y^2 + p_z^2}$$ |
Line | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ | $$\left\Vert\boldsymbol l\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{l_{mx}^2 + l_{my}^2 + l_{mz}^2}$$ |
Plane | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ | $$\left\Vert\mathbf g\right\Vert_\unicode["segoe ui symbol"]{x25CF} = |g_w|$$ |
Motor | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ | $$\left\Vert\mathbf Q\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{Q_{mx}^2 + Q_{my}^2 + Q_{mz}^2 + Q_{mw}^2}$$ |
Flector | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ | $$\left\Vert\mathbf F\right\Vert_\unicode["segoe ui symbol"]{x25CF} = \sqrt{F_{px}^2 + F_{py}^2 + F_{pz}^2 + F_{gw}^2}$$ |
Weight Norm
The weight norm of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB}$$, is the magnitude of its weight components. It can be calculated by taking the square root of the antidot product of $$\mathbf u$$ with itself:
- $$\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB} = \sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2218}} \mathbf u}$$ .
(Note that the square root in this case is taken with respect to the geometric antiproduct.)
An element that has a weight norm of $$\large\unicode{x1D7D9}$$ is said to be weight normalized or unitized.
The following table lists the weight norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.
Type | Definition | Weight Norm |
---|---|---|
Magnitude | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ | $$\left\Vert\mathbf z\right\Vert_\unicode["segoe ui symbol"]{x25CB} = |y|{\large\unicode{x1D7D9}}$$ |
Point | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | $$\left\Vert\mathbf p\right\Vert_\unicode["segoe ui symbol"]{x25CB} = |p_w|{\large\unicode{x1D7D9}}$$ |
Line | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ | $$\left\Vert\boldsymbol l\right\Vert_\unicode["segoe ui symbol"]{x25CB} = {\large\unicode{x1D7D9}}\sqrt{l_{vx}^2 + l_{vy}^2 + l_{vz}^2}$$ |
Plane | $$\mathbf g = g_x \mathbf e_{234} + g_y \mathbf e_{314} + g_z \mathbf e_{124} + g_w \mathbf e_{321}$$ | $$\left\Vert\mathbf g\right\Vert_\unicode["segoe ui symbol"]{x25CB} = {\large\unicode{x1D7D9}}\sqrt{g_x^2 + g_y^2 + g_z^2}$$ |
Motor | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ | $$\left\Vert\mathbf Q\right\Vert_\unicode["segoe ui symbol"]{x25CB} = {\large\unicode{x1D7D9}}\sqrt{Q_{vx}^2 + Q_{vy}^2 + Q_{vz}^2 + Q_{vw}^2}$$ |
Flector | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ | $$\left\Vert\mathbf F\right\Vert_\unicode["segoe ui symbol"]{x25CB} = {\large\unicode{x1D7D9}}\sqrt{F_{gx}^2 + F_{gy}^2 + F_{gz}^2 + F_{pw}^2}$$ |
Geometric Norm
The bulk norm and weight norm are summed to construct the geometric norm given by
- $$\left\Vert\mathbf u\right\Vert = \left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CF} + \left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB} = \sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2022}} \mathbf u} + \sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2218}} \mathbf u}$$ .
This quantity is the sum of a scalar $$a\mathbf 1$$ and antiscalar $$b{\large\unicode{x1D7D9}}$$ representing a homogeneous magnitude that itself has a bulk and a weight. Its bulk norm is simply the magnitude of its scalar part, and its weight norm is simply the magnitude of its antiscalar part. The geometric norm is idempotent because
- $$\left\Vert a\mathbf 1 + b{\large\unicode{x1D7D9}}\right\Vert = |a|\mathbf 1 + |b|{\large\unicode{x1D7D9}}$$ .
Like all other homogeneous quantities, the magnitude given by the geometric norm is unitized by dividing by its weight norm. The unitized magnitude of an element $$\mathbf u$$ is given by
- $$\widehat{\left\Vert\mathbf u\right\Vert} = \dfrac{\left\Vert\mathbf u\right\Vert}{\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB}} = \dfrac{\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CF}}{\left\Vert\mathbf u\right\Vert_\unicode["segoe ui symbol"]{x25CB}} + {\large\unicode{x1D7D9}} = \dfrac{\sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2022}} \mathbf u}}{\sqrt{\mathbf u \mathbin{\unicode["segoe ui symbol"]{x2218}} \mathbf u}} + {\large\unicode{x1D7D9}}$$ .
The following table lists the unitized geometric norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$ after dropping the constant $${\large\unicode{x1D7D9}}$$ term.
Type | Definition | Geometric Norm | Interpretation |
---|---|---|---|
Magnitude | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ | $$\widehat{\left\Vert\mathbf z\right\Vert} = \dfrac{|x|}{|y|}$$ | A Euclidean distance. |
Point | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | $$\widehat{\left\Vert\mathbf p\right\Vert} = \dfrac{\sqrt{p_x^2 + p_y^2 + p_z^2}}{|p_w|}$$ | Distance from the origin to the point $$\mathbf p$$.
Half the distance that the origin is moved by the flector $$\mathbf p$$. |
Line | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ | $$\widehat{\left\Vert\boldsymbol l\right\Vert} = \sqrt{\dfrac{l_{mx}^2 + l_{my}^2 + l_{mz}^2}{l_{vx}^2 + l_{vy}^2 + l_{vz}^2}}$$ | Perpendicular distance from the origin to the line $$\boldsymbol l$$.
Half the distance that the origin is moved by the motor $$\boldsymbol l$$. |
Plane | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ | $$\widehat{\left\Vert\mathbf g\right\Vert} = \dfrac{|g_w|}{\sqrt{g_x^2 + g_y^2 + g_z^2}}$$ | Perpendicular distance from the origin to the plane $$\mathbf g$$.
Half the distance that the origin is moved by the flector $$\mathbf g$$. |
Motor | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ | $$\widehat{\left\Vert\mathbf Q\right\Vert} = \sqrt{\dfrac{Q_{mx}^2 + Q_{my}^2 + Q_{mz}^2 + Q_{mw}^2}{Q_{vx}^2 + Q_{vy}^2 + Q_{vz}^2 + Q_{vw}^2}}$$ | Half the distance that the origin is moved by the motor $$\mathbf Q$$. |
Flector | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ | $$\widehat{\left\Vert\mathbf F\right\Vert} = \sqrt{\dfrac{F_{px}^2 + F_{py}^2 + F_{pz}^2 + F_{gw}^2}{F_{gx}^2 + F_{gy}^2 + F_{gz}^2 + F_{pw}^2}}$$ | Half the distance that the origin is moved by the flector $$\mathbf F$$. |
In the Book
- The geometric norm is discussed in Section 2.10.