Rotation: Difference between revisions
Eric Lengyel (talk | contribs) (Created page with "A ''rotation'' is a proper isometry of Euclidean space. For a unitized line $$\boldsymbol l$$, the specific kind of motor :$$\mathbf R = \boldsymbol l\sin\phi + {\large\unicode{x1d7d9}}\cos\phi$$ , performs a rotation by twice the angle $$\phi$$ about the line $$\boldsymbol l$$ with the sandwich product $$\mathbf R \mathbin{\unicode{x27C7}} \mathbf x \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{R}}$$. The operator $$\mathb...") |
Eric Lengyel (talk | contribs) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
:$$\mathbf R = \boldsymbol l\sin\phi + {\large\unicode{x1d7d9}}\cos\phi$$ , | :$$\mathbf R = \boldsymbol l\sin\phi + {\large\unicode{x1d7d9}}\cos\phi$$ , | ||
performs a rotation by twice the angle $$\phi$$ about the line $$\boldsymbol l$$ with the sandwich product $$\mathbf R \mathbin{\unicode{x27C7}} \mathbf x \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{R}}$$. The operator $$\mathbf R$$ differs from a general [[motor]] only in that it is always the case that $$R_{mw} = 0$$. The line $$\boldsymbol l$$ and its | performs a rotation by twice the angle $$\phi$$ about the line $$\boldsymbol l$$ with the sandwich product $$\mathbf R \mathbin{\unicode{x27C7}} \mathbf x \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{R}}$$. The operator $$\mathbf R$$ differs from a general [[motor]] only in that it is always the case that $$R_{mw} = 0$$. The line $$\boldsymbol l$$ and its [[weight dual]] $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606}$$ are invariant under this operation. The line $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606}$$ lies in the [[horizon]] in directions perpendicular to the direction of $$\boldsymbol l$$. | ||
== Calculation == | == Calculation == | ||
The exact rotation calculations for points, lines, and planes are shown in the following table. | The exact rotation calculations for points, lines, and planes are shown in the following table, where $$\mathbf v = (R_{vx}, R_{vy}, R_{vz})$$ and $$\mathbf m = (R_{mx}, R_{my}, R_{mz})$$. | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 17: | Line 17: | ||
$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | ||
| style="padding: 12px;" | $$\ | | style="padding: 12px;" | $$\mathbf a = \mathbf v \times \mathbf p_{xyz} + p_w\mathbf m$$ | ||
$$\mathbf p'_{xyz} = \mathbf p_{xyz} + 2(R_{vw}\mathbf a + \mathbf v \times \mathbf a)$$ | |||
$$p'_w = p_w$$ | |||
|- | |- | ||
| style="padding: 12px;" | [[Line]] | | style="padding: 12px;" | [[Line]] | ||
$$\begin{split}\boldsymbol l =\, &l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} \\ +\, &l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}\end{split}$$ | $$\begin{split}\boldsymbol l =\, &l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} \\ +\, &l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}\end{split}$$ | ||
| style="padding: 12px;" | $$\ | | style="padding: 12px;" | $$\mathbf a = \mathbf v \times \boldsymbol l_{\mathbf v}$$ | ||
$$\mathbf b = \mathbf v \times \boldsymbol l_{\mathbf m}$$ | |||
$$\mathbf c = \mathbf m \times \boldsymbol l_{\mathbf v}$$ | |||
$$\boldsymbol l'_{\mathbf v} = \boldsymbol l_{\mathbf v} + 2(R_{vw}\mathbf a + \mathbf v \times \mathbf a)$$ | |||
$$\boldsymbol l'_{\mathbf m} = \boldsymbol l_{\mathbf m} + 2(R_{vw}(\mathbf b + \mathbf c) + \mathbf v \times (\mathbf b + \mathbf c) + \mathbf m \times \mathbf a)$$ | |||
|- | |- | ||
| style="padding: 12px;" | [[Plane]] | | style="padding: 12px;" | [[Plane]] | ||
$$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ | ||
| style="padding: 12px;" | $$\ | | style="padding: 12px;" | $$\mathbf a = \mathbf v \times \mathbf g_{xyz}$$ | ||
$$\mathbf g'_{xyz} = \mathbf g_{xyz} + 2(R_{vw}\mathbf a + \mathbf v \times \mathbf a)$$ | |||
$$g'_w = g_w + 2[(\mathbf m \times \mathbf g_{xyz}) \cdot \mathbf v - R_{vw}(\mathbf m \cdot \mathbf g_{xyz})]$$ | |||
|} | |} | ||
== See Also == | == See Also == | ||
* [[ | * [[Complement rotation]] | ||
* [[Translation]] | * [[Translation]] | ||
* [[Reflection]] | * [[Reflection]] | ||
* [[Inversion]] | * [[Inversion]] | ||
* [[Transflection]] | * [[Transflection]] |
Latest revision as of 07:11, 8 August 2024
A rotation is a proper isometry of Euclidean space.
For a unitized line $$\boldsymbol l$$, the specific kind of motor
- $$\mathbf R = \boldsymbol l\sin\phi + {\large\unicode{x1d7d9}}\cos\phi$$ ,
performs a rotation by twice the angle $$\phi$$ about the line $$\boldsymbol l$$ with the sandwich product $$\mathbf R \mathbin{\unicode{x27C7}} \mathbf x \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{R}}$$. The operator $$\mathbf R$$ differs from a general motor only in that it is always the case that $$R_{mw} = 0$$. The line $$\boldsymbol l$$ and its weight dual $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606}$$ are invariant under this operation. The line $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606}$$ lies in the horizon in directions perpendicular to the direction of $$\boldsymbol l$$.
Calculation
The exact rotation calculations for points, lines, and planes are shown in the following table, where $$\mathbf v = (R_{vx}, R_{vy}, R_{vz})$$ and $$\mathbf m = (R_{mx}, R_{my}, R_{mz})$$.
Type | Transformation |
---|---|
Point
$$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ |
$$\mathbf a = \mathbf v \times \mathbf p_{xyz} + p_w\mathbf m$$
$$\mathbf p'_{xyz} = \mathbf p_{xyz} + 2(R_{vw}\mathbf a + \mathbf v \times \mathbf a)$$ $$p'_w = p_w$$ |
Line
$$\begin{split}\boldsymbol l =\, &l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} \\ +\, &l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}\end{split}$$ |
$$\mathbf a = \mathbf v \times \boldsymbol l_{\mathbf v}$$
$$\mathbf b = \mathbf v \times \boldsymbol l_{\mathbf m}$$ $$\mathbf c = \mathbf m \times \boldsymbol l_{\mathbf v}$$ $$\boldsymbol l'_{\mathbf v} = \boldsymbol l_{\mathbf v} + 2(R_{vw}\mathbf a + \mathbf v \times \mathbf a)$$ $$\boldsymbol l'_{\mathbf m} = \boldsymbol l_{\mathbf m} + 2(R_{vw}(\mathbf b + \mathbf c) + \mathbf v \times (\mathbf b + \mathbf c) + \mathbf m \times \mathbf a)$$ |
Plane
$$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ |
$$\mathbf a = \mathbf v \times \mathbf g_{xyz}$$
$$\mathbf g'_{xyz} = \mathbf g_{xyz} + 2(R_{vw}\mathbf a + \mathbf v \times \mathbf a)$$ $$g'_w = g_w + 2[(\mathbf m \times \mathbf g_{xyz}) \cdot \mathbf v - R_{vw}(\mathbf m \cdot \mathbf g_{xyz})]$$ |