Euclidean angle: Difference between revisions

From Rigid Geometric Algebra
Jump to navigation Jump to search
(Created page with "The cosine of the Euclidean angle $$\cos \phi(\mathbf a, \mathbf b)$$ between two geometric objects '''a''' and '''b''' can be measured by the homogeneous magnitude given by :$$\cos \phi(\mathbf a, \mathbf b) = \left\Vert \mathbf a \vee \mathbf b^\unicode["segoe ui symbol"]{x2606}\right\Vert_\unicode{x25CF} + \left\Vert\mathbf a \right\Vert_\unicode{x25CB}\left\Vert\mathbf b \right\Vert_\unicode{x25CB}$$. In the case that the grades of $$\mathbf a$$ and $$\mathbf b...")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
The cosine of the Euclidean angle $$\cos \phi(\mathbf a, \mathbf b)$$ between two geometric objects '''a''' and '''b''' can be measured by the homogeneous [[magnitude]] given by
The cosine of the Euclidean angle $$\cos \phi(\mathbf a, \mathbf b)$$ between two geometric objects '''a''' and '''b''' can be measured by the homogeneous [[magnitude]] given by


:$$\cos \phi(\mathbf a, \mathbf b) = \left\Vert \mathbf a \vee \mathbf b^\unicode["segoe ui symbol"]{x2606}\right\Vert_\unicode{x25CF} + \left\Vert\mathbf a \right\Vert_\unicode{x25CB}\left\Vert\mathbf b \right\Vert_\unicode{x25CB}$$.
:$$\cos \phi(\mathbf a, \mathbf b) = \left\Vert \mathbf a \vee \mathbf b^\unicode["segoe ui symbol"]{x2606}\right\Vert_\unicode["segoe ui symbol"]{x25CF} + \left\Vert\mathbf a \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\mathbf b \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$.


In the case that the grades of $$\mathbf a$$ and $$\mathbf b$$ are equal, a signed angle can be obtained by using the formula
In the case that the grades of $$\mathbf a$$ and $$\mathbf b$$ are equal, a signed angle can be obtained by using the formula


:$$\cos \phi(\mathbf a, \mathbf b) = \mathbf a \vee \mathbf b^\unicode["segoe ui symbol"]{x2606} + \left\Vert\mathbf a \right\Vert_\unicode{x25CB}\left\Vert\mathbf b \right\Vert_\unicode{x25CB}$$.
:$$\cos \phi(\mathbf a, \mathbf b) = \mathbf a \vee \mathbf b^\unicode["segoe ui symbol"]{x2606} + \left\Vert\mathbf a \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\mathbf b \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$.


The following table lists formulas for angles between the main types of geometric objects in the 4D rigid geometric algebra over 3D Euclidean space. These formulas are general and do not require the geometric objects to be [[unitized]]. Most of them become simpler if unitization can be assumed.
The following table lists formulas for angles between the main types of geometric objects in the 4D rigid geometric algebra over 3D Euclidean space. These formulas are general and do not require the geometric objects to be [[unitized]]. Most of them become simpler if unitization can be assumed.
Line 21: Line 21:
| style="padding: 12px;" | Cosine of angle $$\phi$$ between planes $$\mathbf g$$ and $$\mathbf h$$.
| style="padding: 12px;" | Cosine of angle $$\phi$$ between planes $$\mathbf g$$ and $$\mathbf h$$.


$$\cos \phi(\mathbf g, \mathbf h) = (\mathbf g_{xyz} \cdot \mathbf h_{xyz}) \mathbf 1 + \left\Vert\mathbf g \right\Vert_\unicode{x25CB}\left\Vert\mathbf h \right\Vert_\unicode{x25CB}$$
$$\cos \phi(\mathbf g, \mathbf h) = (\mathbf g_{xyz} \cdot \mathbf h_{xyz}) \mathbf 1 + \left\Vert\mathbf g \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\mathbf h \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$
| style="padding: 12px; text-align: center;" | [[Image:angle_plane_plane.svg|122px]]
| style="padding: 12px; text-align: center;" | [[Image:angle_plane_plane.svg|200px]]
|-
|-
| style="padding: 12px;" | Cosine of angle $$\phi$$ between plane $$\mathbf g$$ and line $$\boldsymbol l$$.
| style="padding: 12px;" | Cosine of angle $$\phi$$ between plane $$\mathbf g$$ and line $$\boldsymbol l$$.


$$\cos \phi(\mathbf g, \boldsymbol l) = \left\Vert \mathbf g_{xyz} \times \boldsymbol l_{\mathbf v}\right\Vert \mathbf 1 + \left\Vert\mathbf g \right\Vert_\unicode{x25CB}\left\Vert\boldsymbol l \right\Vert_\unicode{x25CB}$$
$$\cos \phi(\mathbf g, \boldsymbol l) = \left\Vert \mathbf g_{xyz} \times \boldsymbol l_{\mathbf v}\right\Vert \mathbf 1 + \left\Vert\mathbf g \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\boldsymbol l \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$
| style="padding: 12px; text-align: center;" | [[Image:angle_plane_line.svg|250px]]
| style="padding: 12px; text-align: center;" | [[Image:angle_plane_line.svg|200px]]
|-
|-
| style="padding: 12px;" | Cosine of angle $$\phi$$ between lines $$\boldsymbol l$$ and line $$\mathbf k$$.
| style="padding: 12px;" | Cosine of angle $$\phi$$ between lines $$\boldsymbol l$$ and line $$\mathbf k$$.


$$\cos \phi(\boldsymbol l, \mathbf k) = (\boldsymbol l_{\mathbf v} \cdot \mathbf k_{\mathbf v})\mathbf 1 + \left\Vert\boldsymbol l \right\Vert_\unicode{x25CB}\left\Vert\mathbf k \right\Vert_\unicode{x25CB}$$
$$\cos \phi(\boldsymbol l, \mathbf k) = (\boldsymbol l_{\mathbf v} \cdot \mathbf k_{\mathbf v})\mathbf 1 + \left\Vert\boldsymbol l \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\mathbf k \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$
| style="padding: 12px; text-align: center;" | [[Image:angle_line_line.svg|250px]]
| style="padding: 12px; text-align: center;" | [[Image:angle_line_line.svg|200px]]
|}
|}



Latest revision as of 01:31, 8 July 2024

The cosine of the Euclidean angle $$\cos \phi(\mathbf a, \mathbf b)$$ between two geometric objects a and b can be measured by the homogeneous magnitude given by

$$\cos \phi(\mathbf a, \mathbf b) = \left\Vert \mathbf a \vee \mathbf b^\unicode["segoe ui symbol"]{x2606}\right\Vert_\unicode["segoe ui symbol"]{x25CF} + \left\Vert\mathbf a \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\mathbf b \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$.

In the case that the grades of $$\mathbf a$$ and $$\mathbf b$$ are equal, a signed angle can be obtained by using the formula

$$\cos \phi(\mathbf a, \mathbf b) = \mathbf a \vee \mathbf b^\unicode["segoe ui symbol"]{x2606} + \left\Vert\mathbf a \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\mathbf b \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$.

The following table lists formulas for angles between the main types of geometric objects in the 4D rigid geometric algebra over 3D Euclidean space. These formulas are general and do not require the geometric objects to be unitized. Most of them become simpler if unitization can be assumed.

The lines and planes appearing in the distance formulas are defined as follows:

$$\mathbf k = k_{vx} \mathbf e_{41} + k_{vy} \mathbf e_{42} + k_{vz} \mathbf e_{43} + k_{mx} \mathbf e_{23} + k_{my} \mathbf e_{31} + k_{mz} \mathbf e_{12}$$
$$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
$$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
$$\mathbf h = h_x \mathbf e_{423} + h_y \mathbf e_{431} + h_z \mathbf e_{412} + h_w \mathbf e_{321}$$
Angle Formula Illustration
Cosine of angle $$\phi$$ between planes $$\mathbf g$$ and $$\mathbf h$$.

$$\cos \phi(\mathbf g, \mathbf h) = (\mathbf g_{xyz} \cdot \mathbf h_{xyz}) \mathbf 1 + \left\Vert\mathbf g \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\mathbf h \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$

Cosine of angle $$\phi$$ between plane $$\mathbf g$$ and line $$\boldsymbol l$$.

$$\cos \phi(\mathbf g, \boldsymbol l) = \left\Vert \mathbf g_{xyz} \times \boldsymbol l_{\mathbf v}\right\Vert \mathbf 1 + \left\Vert\mathbf g \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\boldsymbol l \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$

Cosine of angle $$\phi$$ between lines $$\boldsymbol l$$ and line $$\mathbf k$$.

$$\cos \phi(\boldsymbol l, \mathbf k) = (\boldsymbol l_{\mathbf v} \cdot \mathbf k_{\mathbf v})\mathbf 1 + \left\Vert\boldsymbol l \right\Vert_\unicode["segoe ui symbol"]{x25CB}\left\Vert\mathbf k \right\Vert_\unicode["segoe ui symbol"]{x25CB}$$


In the Book

  • Euclidean angles are discussed in Section 2.13.3.

See Also