Duals: Difference between revisions

From Rigid Geometric Algebra
Jump to navigation Jump to search
(Created page with "The ''metric dual'' or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as :$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ , where $$\mathbf G$$ is the extended metric tensor. The ''metric antidual'' or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as :$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \over...")
 
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
Every object in projective geometric algebra has two duals derived from the metric tensor, called the ''metric dual'' and ''metric antidual''.
== Dual ==
The ''metric dual'' or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as
The ''metric dual'' or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as


:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,
:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,


where $$\mathbf G$$ is the extended metric tensor.
where $$\mathbf G$$ is the $$16 \times 16$$ [[metric exomorphism matrix]]. In projective geometric algebra, this dual is also called the ''bulk dual'' because it is the [[complement]] of the bulk components, as expressed by
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf u_\unicode{x25CF}}$$ .
 
The bulk dual satisfies the following identity based on the [[geometric product]]:
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \tilde{\mathbf u} \mathbin{\unicode{x27D1}} {\large\unicode{x1D7D9}}$$ .
 
== Antidual ==


The ''metric antidual'' or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as
The ''metric antidual'' or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as
Line 9: Line 21:
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,


where $$\mathbb G$$ is the extended antimetric tensor.
where $$\mathbb G$$ is the $$16 \times 16$$ [[metric antiexomorphism matrix]]. In projective geometric algebra, this dual is also called the ''weight dual'' because it is the [[complement]] of the weight components, as expressed by
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbf u_\unicode{x25CB}}$$ .
 
The weight dual satisfies the following identity based on the [[geometric antiproduct]]:
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \smash{\mathbf{\underset{\Large\unicode{x7E}}{u}}} \mathbin{\unicode{x27C7}} \mathbf 1$$ .
 
== Geometries ==
 
The bulk duals and weight duals of geometries in the 4D rigid geometric algebra are listed in the following table.
 
{| class="wikitable"
! Type !! Bulk Dual !! Weight Dual
|-
| style="padding: 12px;" | [[Point]]
| style="padding: 12px;" | $$\mathbf p^\unicode["segoe ui symbol"]{x2605} = p_x \mathbf e_{423} + p_y \mathbf e_{431} + p_z \mathbf e_{412}$$
| style="padding: 12px;" | $$\mathbf p^\unicode["segoe ui symbol"]{x2606} = p_w \mathbf e_{321}$$
|-
| style="padding: 12px;" | [[Line]]
| style="padding: 12px;" | $$\boldsymbol l^\unicode["segoe ui symbol"]{x2605} = -l_{mx} \mathbf e_{41} - l_{my} \mathbf e_{42} - l_{mz} \mathbf e_{43}$$
| style="padding: 12px;" | $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606} = -l_{vx} \mathbf e_{23} - l_{vy} \mathbf e_{31} - l_{vz} \mathbf e_{12}$$
|-
| style="padding: 12px;" | [[Plane]]
| style="padding: 12px;" | $$\mathbf g^\unicode["segoe ui symbol"]{x2605} = -g_w \mathbf e_4$$
| style="padding: 12px;" | $$\mathbf g^\unicode["segoe ui symbol"]{x2606} = -g_x \mathbf e_1 - g_y \mathbf e_2 - g_z \mathbf e_3$$
|}
 
== In the Book ==
 
* Duals are introduced in Section 2.12.
 
== See Also ==
 
* [[Complements]]
* [[Bulk and weight]]

Latest revision as of 23:32, 13 April 2024

Every object in projective geometric algebra has two duals derived from the metric tensor, called the metric dual and metric antidual.

Dual

The metric dual or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as

$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,

where $$\mathbf G$$ is the $$16 \times 16$$ metric exomorphism matrix. In projective geometric algebra, this dual is also called the bulk dual because it is the complement of the bulk components, as expressed by

$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf u_\unicode{x25CF}}$$ .

The bulk dual satisfies the following identity based on the geometric product:

$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \tilde{\mathbf u} \mathbin{\unicode{x27D1}} {\large\unicode{x1D7D9}}$$ .

Antidual

The metric antidual or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as

$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,

where $$\mathbb G$$ is the $$16 \times 16$$ metric antiexomorphism matrix. In projective geometric algebra, this dual is also called the weight dual because it is the complement of the weight components, as expressed by

$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbf u_\unicode{x25CB}}$$ .

The weight dual satisfies the following identity based on the geometric antiproduct:

$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \smash{\mathbf{\underset{\Large\unicode{x7E}}{u}}} \mathbin{\unicode{x27C7}} \mathbf 1$$ .

Geometries

The bulk duals and weight duals of geometries in the 4D rigid geometric algebra are listed in the following table.

Type Bulk Dual Weight Dual
Point $$\mathbf p^\unicode["segoe ui symbol"]{x2605} = p_x \mathbf e_{423} + p_y \mathbf e_{431} + p_z \mathbf e_{412}$$ $$\mathbf p^\unicode["segoe ui symbol"]{x2606} = p_w \mathbf e_{321}$$
Line $$\boldsymbol l^\unicode["segoe ui symbol"]{x2605} = -l_{mx} \mathbf e_{41} - l_{my} \mathbf e_{42} - l_{mz} \mathbf e_{43}$$ $$\boldsymbol l^\unicode["segoe ui symbol"]{x2606} = -l_{vx} \mathbf e_{23} - l_{vy} \mathbf e_{31} - l_{vz} \mathbf e_{12}$$
Plane $$\mathbf g^\unicode["segoe ui symbol"]{x2605} = -g_w \mathbf e_4$$ $$\mathbf g^\unicode["segoe ui symbol"]{x2606} = -g_x \mathbf e_1 - g_y \mathbf e_2 - g_z \mathbf e_3$$

In the Book

  • Duals are introduced in Section 2.12.

See Also