Bulk contraction and Duals: Difference between pages

From Rigid Geometric Algebra
(Difference between pages)
Jump to navigation Jump to search
(Created page with "#REDIRECTION Interior products")
 
(Created page with "The ''metric dual'' or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as :$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ , where $$\mathbf G$$ is the extended metric tensor. The ''metric antidual'' or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as :$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \over...")
 
Line 1: Line 1:
#REDIRECTION [[Interior products]]
The ''metric dual'' or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,
 
where $$\mathbf G$$ is the extended metric tensor.
 
The ''metric antidual'' or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as
 
:$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,
 
where $$\mathbb G$$ is the extended antimetric tensor.

Revision as of 06:15, 12 April 2024

The metric dual or just "dual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2605}$$ and defined as

$$\mathbf u^\unicode["segoe ui symbol"]{x2605} = \overline{\mathbf{Gu}}$$ ,

where $$\mathbf G$$ is the extended metric tensor.

The metric antidual or just "antidual" of an object $$\mathbf u$$ is denoted by $$\mathbf u^\unicode["segoe ui symbol"]{x2606}$$ and defined as

$$\mathbf u^\unicode["segoe ui symbol"]{x2606} = \overline{\mathbb G \mathbf u}$$ ,

where $$\mathbb G$$ is the extended antimetric tensor.