Projections and Geometric norm: Difference between pages

From Rigid Geometric Algebra
(Difference between pages)
Jump to navigation Jump to search
 
 
Line 1: Line 1:
Projections and antiprojections of one geometric object onto another can be accomplished using the connect and meet operations as described below.
The ''geometric norm'' is a measure of the magnitude of an element. It has two components called the bulk norm and the weight norm.


The formulas on this page are general and do not require the geometric objects to be [[unitized]]. Most of them become simpler if unitization can be assumed.
For [[points]], [[lines]], and [[planes]], the geometric norm is equal to the shortest Euclidean distance between the geometry and the origin. For [[motors]] and [[flectors]], the geometric norm is equal to half the distance that the origin is moved by the isometry operator.


== Projection ==
== Bulk Norm ==


The geometric projection of an object $$\mathbf x$$ onto an object $$\mathbf y$$ is given by the general formula
The ''bulk norm'' of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode{x25CF}$$, is the magnitude of its [[bulk]] components. It can be calculated by taking the square root of the [[dot product]] of $$\mathbf u$$ with itself:


:$$(\mathbf y^\unicode["segoe ui symbol"]{x2605} \wedge \mathbf x) \vee \mathbf y$$ .
:$$\left\Vert\mathbf u\right\Vert_\unicode{x25CF} = \sqrt{\mathbf u \mathbin{\unicode{x25CF}} \mathbf u}$$ .


Projections involving [[points]], [[lines]], and [[planes]] in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$ are shown in the following table.
An element that has a bulk norm of '''1''' is said to be ''bulk normalized''.
 
The following table lists the bulk norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.


{| class="wikitable"
{| class="wikitable"
! Projection Formula !! Illustration
! Type !! Definition !! Bulk Norm
|-
| style="padding: 12px;" | [[Magnitude]]
| style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$
| style="padding: 12px;" | $$\left\Vert\mathbf z\right\Vert_\unicode{x25CF} = |x|$$
|-
| style="padding: 12px;" | [[Point]]
| style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
| style="padding: 12px;" | $$\left\Vert\mathbf p\right\Vert_\unicode{x25CF} = \sqrt{p_x^2 + p_y^2 + p_z^2}$$
|-
|-
| style="padding: 12px;" | Projection of point $$\mathbf p$$ onto plane $$\mathbf g$$.
| style="padding: 12px;" | [[Line]]
 
| style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
$$(\mathbf g^\unicode["segoe ui symbol"]{x2605} \wedge \mathbf p) \vee \mathbf g = (g_x^2 + g_y^2 + g_z^2)\mathbf p - (g_xp_x + g_yp_y + g_zp_z + g_wp_w)(g_x \mathbf e_1 + g_y \mathbf e_2 + g_z \mathbf e_3)$$
| style="padding: 12px;" | $$\left\Vert\boldsymbol l\right\Vert_\unicode{x25CF} = \sqrt{l_{mx}^2 + l_{my}^2 + l_{mz}^2}$$
| style="padding: 12px;" | [[Image:point_onto_plane.svg|300px]]
|-
| style="padding: 12px;" | [[Plane]]
| style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\left\Vert\mathbf g\right\Vert_\unicode{x25CF} = |g_w|$$
|-
| style="padding: 12px;" | [[Motor]]
| style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\left\Vert\mathbf Q\right\Vert_\unicode{x25CF} = \sqrt{Q_{mx}^2 + Q_{my}^2 + Q_{mz}^2 + Q_{mw}^2}$$
|-
|-
| style="padding: 12px;" | Projection of point $$\mathbf p$$ onto line $$\boldsymbol l$$.
| style="padding: 12px;" | [[Flector]]
| style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\left\Vert\mathbf F\right\Vert_\unicode{x25CF} = \sqrt{F_{px}^2 + F_{py}^2 + F_{pz}^2 + F_{gw}^2}$$
|}


$$\begin{split}(\boldsymbol l^\unicode["segoe ui symbol"]{x2605} \wedge \mathbf p) \vee \boldsymbol l =\, &(l_{vx} p_x + l_{vy} p_y + l_{vz} p_z)\mathbf v \\ +\, &(l_{vy} l_{mz} - l_{vz} l_{my})p_w \mathbf e_1 \\ +\, &(l_{vz} l_{mx} - l_{vx} l_{mz})p_w \mathbf e_2 \\ +\, &(l_{vx} l_{my} - l_{vy} l_{mx})p_w \mathbf e_3 \\ +\, &(l_{vx}^2 + l_{vy}^2 + l_{vz}^2)p_w \mathbf e_4\end{split}$$
== Weight Norm ==
| style="padding: 12px;" | [[Image:point_onto_line.svg|300px]]
|-
| style="padding: 12px;" | Projection of line $$\boldsymbol l$$ onto plane $$\mathbf g$$.


$$\begin{split}(\mathbf g^\unicode["segoe ui symbol"]{x2605} \wedge \boldsymbol l) \vee \mathbf g =\, &(g_x^2 + g_y^2 + g_z^2)(l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43}) \\ -\, &(g_x l_{vx} + g_y l_{vy} + g_z l_{vz})(g_x \mathbf e_{41} + g_y \mathbf e_{42} + g_z \mathbf e_{43}) \\ +\, &(g_x l_{mx} + g_y l_{my} + g_z l_{mz})(g_x \mathbf e_{23} + g_y \mathbf e_{31} + g_z \mathbf e_{12}) \\ -\, &(g_y l_{vz} - g_z l_{vy})g_w \mathbf e_{23} - (g_z l_{vx} - g_x l_{vz})g_w \mathbf e_{31} - (g_x l_{vy} - g_y l_{vx})g_w \mathbf e_{12}\end{split}$$
The ''weight norm'' of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode{x25CB}$$, is the magnitude of its [[weight]] components. It can be calculated by taking the square root of the [[antidot product]] of $$\mathbf u$$ with itself:
| style="padding: 12px;" | [[Image:line_onto_plane.svg|300px]]
|}


== Antiprojection ==
:$$\left\Vert\mathbf u\right\Vert_\unicode{x25CB} = \sqrt{\mathbf u \mathbin{\unicode{x25CB}} \mathbf u}$$ .


The geometric antiprojection of an object $$\mathbf x$$ onto an object $$\mathbf y$$ is given by the general formula
(Note that the square root in this case is taken with respect to the geometric antiproduct.)


:$$(\mathbf y^\unicode["segoe ui symbol"]{x2605} \vee \mathbf x) \wedge \mathbf y$$ .
An element that has a weight norm of $$\large\unicode{x1D7D9}$$ is said to be ''weight normalized'' or ''[[unitized]]''.


Antiprojections involving [[points]], [[lines]], and [[planes]] in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$ are shown in the following table.
The following table lists the weight norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.


{| class="wikitable"
{| class="wikitable"
! Antiprojection Formula !! Illustration
! Type !! Definition !! Weight Norm
|-
| style="padding: 12px;" | [[Magnitude]]
| style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$
| style="padding: 12px;" | $$\left\Vert\mathbf z\right\Vert_\unicode{x25CB} = |y|{\large\unicode{x1D7D9}}$$
|-
| style="padding: 12px;" | [[Point]]
| style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
| style="padding: 12px;" | $$\left\Vert\mathbf p\right\Vert_\unicode{x25CB} = |p_w|{\large\unicode{x1D7D9}}$$
|-
|-
| style="padding: 12px;" | Antiprojection of plane $$\mathbf g$$ onto point $$\mathbf p$$.
| style="padding: 12px;" | [[Line]]
| style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
| style="padding: 12px;" | $$\left\Vert\boldsymbol l\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{l_{vx}^2 + l_{vy}^2 + l_{vz}^2}$$
|-
| style="padding: 12px;" | [[Plane]]
| style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{234} + g_y \mathbf e_{314} + g_z \mathbf e_{124} + g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\left\Vert\mathbf g\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{g_x^2 + g_y^2 + g_z^2}$$
|-
| style="padding: 12px;" | [[Motor]]
| style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\left\Vert\mathbf Q\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{Q_{vx}^2 + Q_{vy}^2 + Q_{vz}^2 + Q_{vw}^2}$$
|-
| style="padding: 12px;" | [[Flector]]
| style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\left\Vert\mathbf F\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{F_{gx}^2 + F_{gy}^2 + F_{gz}^2 + F_{pw}^2}$$
|}
 
== Geometric Norm ==
 
The bulk norm and weight norm are summed to construct the ''geometric norm'' given by


$$(\mathbf p^\unicode["segoe ui symbol"]{x2605} \vee \mathbf g) \wedge \mathbf p = g_xp_w^2 \mathbf e_{423} + g_yp_w^2 \mathbf e_{431} + g_zp_w^2 \mathbf e_{412} - (g_xp_x + g_yp_y + g_zp_z)p_w \mathbf e_{321}$$
:$$\left\Vert\mathbf u\right\Vert = \left\Vert\mathbf u\right\Vert_\unicode{x25CF} + \left\Vert\mathbf u\right\Vert_\unicode{x25CB} = \sqrt{\mathbf u \mathbin{\unicode{x25CF}} \mathbf u} + \sqrt{\mathbf u \mathbin{\unicode{x25CB}} \mathbf u}$$ .
| style="padding: 12px;" | [[Image:plane_onto_point.svg|300px]]
 
|-
This quantity is the sum of a scalar $$a\mathbf 1$$ and antiscalar $$b{\large\unicode{x1D7D9}}$$ representing a ''homogeneous magnitude'' that itself has a bulk and a weight. Its bulk norm is simply the magnitude of its scalar part, and its weight norm is simply the magnitude of its antiscalar part. The geometric norm is idempotent because
| style="padding: 12px;" | Antiprojection of line $$\boldsymbol l$$ onto point $$\mathbf p$$.


$$\begin{split}(\mathbf p^\unicode["segoe ui symbol"]{x2605} \vee \boldsymbol l) \wedge \mathbf p =\, &l_{vx} p_w^2 \mathbf e_{41} + l_{vy} p_w^2 \mathbf e_{42} + l_{vz} p_w^2 \mathbf e_{43} \\ +\, &(p_y l_{vz} - p_z l_{vy})p_w \mathbf e_{23} + (p_z l_{vx} - p_x l_{vz})p_w \mathbf e_{31} + (p_x l_{vy} - p_y l_{vx})p_w \mathbf e_{12}\end{split}$$
:$$\left\Vert a\mathbf 1 + b{\large\unicode{x1D7D9}}\right\Vert = |a|\mathbf 1 + |b|{\large\unicode{x1D7D9}}$$ .
| style="padding: 12px;" | [[Image:line_onto_point.svg|300px]]
|-
| style="padding: 12px;" | Antiprojection of plane $$\mathbf g$$ onto line $$\boldsymbol l$$.


$$\begin{split}(\boldsymbol l^\unicode["segoe ui symbol"]{x2605} \vee \mathbf g) \wedge \boldsymbol l =\, &(l_{vx}^2 + l_{vy}^2 + l_{vz}^2)(g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412}) \\ -\, &(g_x l_{vx} + g_y l_{vy} + g_z l_{vz})(l_{vx} \mathbf e_{423} + l_{vy} \mathbf e_{431} + l_{vz} \mathbf e_{412}) \\ +\, &(g_x l_{my} l_{vz} - g_x l_{mz} l_{vy} + g_y l_{mz} l_{vx} - g_y l_{mx} l_{vz} + g_z l_{mx} l_{vy} - g_z l_{my} l_{vx}) \mathbf e_{321}\end{split}$$
Like all other homogeneous quantities, the magnitude given by the geometric norm is [[unitized]] by dividing by its weight norm. The unitized magnitude of an element $$\mathbf u$$ is given by
| style="padding: 12px;" | [[Image:plane_onto_line.svg|300px]]
|}


== Projection of Origin ==
:$$\widehat{\left\Vert\mathbf u\right\Vert} = \dfrac{\left\Vert\mathbf u\right\Vert}{\left\Vert\mathbf u\right\Vert_\unicode{x25CB}} = \dfrac{\left\Vert\mathbf u\right\Vert_\unicode{x25CF}}{\left\Vert\mathbf u\right\Vert_\unicode{x25CB}} + {\large\unicode{x1D7D9}} = \dfrac{\sqrt{\mathbf u \mathbin{\unicode{x25CF}} \mathbf u}}{\sqrt{\mathbf u \mathbin{\unicode{x25CB}} \mathbf u}} + {\large\unicode{x1D7D9}}$$ .


When a point $$\mathbf p$$ is projected onto another geometry, the result can be interpreted as the point on that geometry that is closest to the original point $$\mathbf p$$. In the particular case that $$\mathbf p = \mathbf e_4$$, which is the unitized origin, the projection finds the point on a geometry that is closest to the origin. Specific formulas are listed in the following table.
The following table lists the unitized geometric norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$ after dropping the constant $${\large\unicode{x1D7D9}}$$ term.


{| class="wikitable"
{| class="wikitable"
! Projection Formula !! Description
! Type !! Definition !! Geometric Norm !! Interpretation
|-
|-
| style="padding: 12px;" | $$(\mathbf g^\unicode["segoe ui symbol"]{x2605} \wedge \mathbf e_4) \vee \mathbf g = -g_xg_w \mathbf e_1 - g_yg_w \mathbf e_2 - g_zg_w \mathbf e_3 + (g_x^2 + g_y^2 + g_z^2)\mathbf e_4$$
| style="padding: 12px;" | [[Magnitude]]
| style="padding: 12px;" | Point closest to the origin on the plane $$\mathbf g$$.
| style="padding: 12px;" | $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$
| style="padding: 12px;" | $$\widehat{\left\Vert\mathbf z\right\Vert} = \dfrac{|x|}{|y|}$$
| style="padding: 12px;" | A Euclidean distance.
|-
|-
| style="padding: 12px;" | $$(\boldsymbol l^\unicode["segoe ui symbol"]{x2605} \wedge \mathbf e_4) \vee \boldsymbol l = (l_{vy} l_{mz} - l_{vz} l_{my})\mathbf e_1 + (l_{vz} l_{mx} - l_{vx} l_{mz})\mathbf e_2 + (l_{vx} l_{my} - l_{vy} l_{mx})\mathbf e_3 + (l_{vx}^2 + l_{vy}^2 + l_{vz}^2)\mathbf e_4$$
| style="padding: 12px;" | [[Point]]
| style="padding: 12px;" | Point closest to the origin on the line $$\boldsymbol l$$.
| style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$
|}
| style="padding: 12px;" | $$\widehat{\left\Vert\mathbf p\right\Vert} = \dfrac{\sqrt{p_x^2 + p_y^2 + p_z^2}}{|p_w|}$$
| style="padding: 12px;" | Distance from the origin to the point $$\mathbf p$$.


== Antiprojection of Horizon ==
Half the distance that the origin is moved by the [[flector]] $$\mathbf p$$.
|-
| style="padding: 12px;" | [[Line]]
| style="padding: 12px;" | $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$
| style="padding: 12px;" | $$\widehat{\left\Vert\boldsymbol l\right\Vert} = \sqrt{\dfrac{l_{mx}^2 + l_{my}^2 + l_{mz}^2}{l_{vx}^2 + l_{vy}^2 + l_{vz}^2}}$$
| style="padding: 12px;" | Perpendicular distance from the origin to the line $$\boldsymbol l$$.


Symmetrically to the projection of the origin, the horizon $$\mathbf g = \mathbf e_{321}$$ (the plane at infinity) can be antiprojected onto a point or line using the connect operation with the antidual instead of the dual. This operation finds the plane containing the geometry that is farthest from the origin. Specific formulas are listed in the following table.
Half the distance that the origin is moved by the [[motor]] $$\boldsymbol l$$.
|-
| style="padding: 12px;" | [[Plane]]
| style="padding: 12px;" | $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$
| style="padding: 12px;" | $$\widehat{\left\Vert\mathbf g\right\Vert} = \dfrac{|g_w|}{\sqrt{g_x^2 + g_y^2 + g_z^2}}$$
| style="padding: 12px;" | Perpendicular distance from the origin to the plane $$\mathbf g$$.


{| class="wikitable"
Half the distance that the origin is moved by the [[flector]] $$\mathbf g$$.
! Antiprojection Formula !! Description
|-
|-
| style="padding: 12px;" | $$(\mathbf p^\unicode["segoe ui symbol"]{x2606} \vee \mathbf e_{321}) \wedge \mathbf p = p_xp_w \mathbf e_{423} + p_yp_w \mathbf e_{431} + p_zp_w \mathbf e_{412} - (p_x^2 + p_y^2 + p_z^2)\mathbf e_{321}$$
| style="padding: 12px;" | [[Motor]]
| style="padding: 12px;" | Plane farthest from the origin containing the point $$\mathbf p$$.
| style="padding: 12px;" | $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$
| style="padding: 12px;" | $$\widehat{\left\Vert\mathbf Q\right\Vert} = \sqrt{\dfrac{Q_{mx}^2 + Q_{my}^2 + Q_{mz}^2 + Q_{mw}^2}{Q_{vx}^2 + Q_{vy}^2 + Q_{vz}^2 + Q_{vw}^2}}$$
| style="padding: 12px;" | Half the distance that the origin is moved by the [[motor]] $$\mathbf Q$$.
|-
|-
| style="padding: 12px;" | $$(\boldsymbol l^\unicode["segoe ui symbol"]{x2606} \vee \mathbf e_{321}) \wedge \boldsymbol l = (l_{my} l_{vz} - l_{mz} l_{vy})\mathbf e_{423} + (l_{mz} l_{vx} - l_{mx} l_{vz})\mathbf e_{431} + (l_{mx} l_{vy} - l_{my} l_{vx})\mathbf e_{412} + (l_{mx}^2 + l_{my}^2 + l_{mz}^2)\mathbf e_{321}$$
| style="padding: 12px;" | [[Flector]]
| style="padding: 12px;" | Plane farthest from the origin containing the line $$\boldsymbol l$$.
| style="padding: 12px;" | $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$
| style="padding: 12px;" | $$\widehat{\left\Vert\mathbf F\right\Vert} = \sqrt{\dfrac{F_{px}^2 + F_{py}^2 + F_{pz}^2 + F_{gw}^2}{F_{gx}^2 + F_{gy}^2 + F_{gz}^2 + F_{pw}^2}}$$
| style="padding: 12px;" | Half the distance that the origin is moved by the [[flector]] $$\mathbf F$$.
|}
|}


== See Also ==
== See Also ==


* [[Join and meet]]
* [[Geometric constraint]]

Revision as of 01:00, 9 February 2024

The geometric norm is a measure of the magnitude of an element. It has two components called the bulk norm and the weight norm.

For points, lines, and planes, the geometric norm is equal to the shortest Euclidean distance between the geometry and the origin. For motors and flectors, the geometric norm is equal to half the distance that the origin is moved by the isometry operator.

Bulk Norm

The bulk norm of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode{x25CF}$$, is the magnitude of its bulk components. It can be calculated by taking the square root of the dot product of $$\mathbf u$$ with itself:

$$\left\Vert\mathbf u\right\Vert_\unicode{x25CF} = \sqrt{\mathbf u \mathbin{\unicode{x25CF}} \mathbf u}$$ .

An element that has a bulk norm of 1 is said to be bulk normalized.

The following table lists the bulk norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.

Type Definition Bulk Norm
Magnitude $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ $$\left\Vert\mathbf z\right\Vert_\unicode{x25CF} = |x|$$
Point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ $$\left\Vert\mathbf p\right\Vert_\unicode{x25CF} = \sqrt{p_x^2 + p_y^2 + p_z^2}$$
Line $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\left\Vert\boldsymbol l\right\Vert_\unicode{x25CF} = \sqrt{l_{mx}^2 + l_{my}^2 + l_{mz}^2}$$
Plane $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ $$\left\Vert\mathbf g\right\Vert_\unicode{x25CF} = |g_w|$$
Motor $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\left\Vert\mathbf Q\right\Vert_\unicode{x25CF} = \sqrt{Q_{mx}^2 + Q_{my}^2 + Q_{mz}^2 + Q_{mw}^2}$$
Flector $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ $$\left\Vert\mathbf F\right\Vert_\unicode{x25CF} = \sqrt{F_{px}^2 + F_{py}^2 + F_{pz}^2 + F_{gw}^2}$$

Weight Norm

The weight norm of an element $$\mathbf u$$, denoted $$\left\Vert\mathbf u\right\Vert_\unicode{x25CB}$$, is the magnitude of its weight components. It can be calculated by taking the square root of the antidot product of $$\mathbf u$$ with itself:

$$\left\Vert\mathbf u\right\Vert_\unicode{x25CB} = \sqrt{\mathbf u \mathbin{\unicode{x25CB}} \mathbf u}$$ .

(Note that the square root in this case is taken with respect to the geometric antiproduct.)

An element that has a weight norm of $$\large\unicode{x1D7D9}$$ is said to be weight normalized or unitized.

The following table lists the weight norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$.

Type Definition Weight Norm
Magnitude $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ $$\left\Vert\mathbf z\right\Vert_\unicode{x25CB} = |y|{\large\unicode{x1D7D9}}$$
Point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ $$\left\Vert\mathbf p\right\Vert_\unicode{x25CB} = |p_w|{\large\unicode{x1D7D9}}$$
Line $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\left\Vert\boldsymbol l\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{l_{vx}^2 + l_{vy}^2 + l_{vz}^2}$$
Plane $$\mathbf g = g_x \mathbf e_{234} + g_y \mathbf e_{314} + g_z \mathbf e_{124} + g_w \mathbf e_{321}$$ $$\left\Vert\mathbf g\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{g_x^2 + g_y^2 + g_z^2}$$
Motor $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\left\Vert\mathbf Q\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{Q_{vx}^2 + Q_{vy}^2 + Q_{vz}^2 + Q_{vw}^2}$$
Flector $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ $$\left\Vert\mathbf F\right\Vert_\unicode{x25CB} = {\large\unicode{x1D7D9}}\sqrt{F_{gx}^2 + F_{gy}^2 + F_{gz}^2 + F_{pw}^2}$$

Geometric Norm

The bulk norm and weight norm are summed to construct the geometric norm given by

$$\left\Vert\mathbf u\right\Vert = \left\Vert\mathbf u\right\Vert_\unicode{x25CF} + \left\Vert\mathbf u\right\Vert_\unicode{x25CB} = \sqrt{\mathbf u \mathbin{\unicode{x25CF}} \mathbf u} + \sqrt{\mathbf u \mathbin{\unicode{x25CB}} \mathbf u}$$ .

This quantity is the sum of a scalar $$a\mathbf 1$$ and antiscalar $$b{\large\unicode{x1D7D9}}$$ representing a homogeneous magnitude that itself has a bulk and a weight. Its bulk norm is simply the magnitude of its scalar part, and its weight norm is simply the magnitude of its antiscalar part. The geometric norm is idempotent because

$$\left\Vert a\mathbf 1 + b{\large\unicode{x1D7D9}}\right\Vert = |a|\mathbf 1 + |b|{\large\unicode{x1D7D9}}$$ .

Like all other homogeneous quantities, the magnitude given by the geometric norm is unitized by dividing by its weight norm. The unitized magnitude of an element $$\mathbf u$$ is given by

$$\widehat{\left\Vert\mathbf u\right\Vert} = \dfrac{\left\Vert\mathbf u\right\Vert}{\left\Vert\mathbf u\right\Vert_\unicode{x25CB}} = \dfrac{\left\Vert\mathbf u\right\Vert_\unicode{x25CF}}{\left\Vert\mathbf u\right\Vert_\unicode{x25CB}} + {\large\unicode{x1D7D9}} = \dfrac{\sqrt{\mathbf u \mathbin{\unicode{x25CF}} \mathbf u}}{\sqrt{\mathbf u \mathbin{\unicode{x25CB}} \mathbf u}} + {\large\unicode{x1D7D9}}$$ .

The following table lists the unitized geometric norms of the main types in the 4D rigid geometric algebra $$\mathcal G_{3,0,1}$$ after dropping the constant $${\large\unicode{x1D7D9}}$$ term.

Type Definition Geometric Norm Interpretation
Magnitude $$\mathbf z = x \mathbf 1 + y {\large\unicode{x1d7d9}}$$ $$\widehat{\left\Vert\mathbf z\right\Vert} = \dfrac{|x|}{|y|}$$ A Euclidean distance.
Point $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ $$\widehat{\left\Vert\mathbf p\right\Vert} = \dfrac{\sqrt{p_x^2 + p_y^2 + p_z^2}}{|p_w|}$$ Distance from the origin to the point $$\mathbf p$$.

Half the distance that the origin is moved by the flector $$\mathbf p$$.

Line $$\boldsymbol l = l_{vx} \mathbf e_{41} + l_{vy} \mathbf e_{42} + l_{vz} \mathbf e_{43} + l_{mx} \mathbf e_{23} + l_{my} \mathbf e_{31} + l_{mz} \mathbf e_{12}$$ $$\widehat{\left\Vert\boldsymbol l\right\Vert} = \sqrt{\dfrac{l_{mx}^2 + l_{my}^2 + l_{mz}^2}{l_{vx}^2 + l_{vy}^2 + l_{vz}^2}}$$ Perpendicular distance from the origin to the line $$\boldsymbol l$$.

Half the distance that the origin is moved by the motor $$\boldsymbol l$$.

Plane $$\mathbf g = g_x \mathbf e_{423} + g_y \mathbf e_{431} + g_z \mathbf e_{412} + g_w \mathbf e_{321}$$ $$\widehat{\left\Vert\mathbf g\right\Vert} = \dfrac{|g_w|}{\sqrt{g_x^2 + g_y^2 + g_z^2}}$$ Perpendicular distance from the origin to the plane $$\mathbf g$$.

Half the distance that the origin is moved by the flector $$\mathbf g$$.

Motor $$\mathbf Q = Q_{vx} \mathbf e_{41} + Q_{vy} \mathbf e_{42} + Q_{vz} \mathbf e_{43} + Q_{vw} {\large\unicode{x1d7d9}} + Q_{mx} \mathbf e_{23} + Q_{my} \mathbf e_{31} + Q_{mz} \mathbf e_{12} + Q_{mw} \mathbf 1$$ $$\widehat{\left\Vert\mathbf Q\right\Vert} = \sqrt{\dfrac{Q_{mx}^2 + Q_{my}^2 + Q_{mz}^2 + Q_{mw}^2}{Q_{vx}^2 + Q_{vy}^2 + Q_{vz}^2 + Q_{vw}^2}}$$ Half the distance that the origin is moved by the motor $$\mathbf Q$$.
Flector $$\mathbf F = F_{px} \mathbf e_1 + F_{py} \mathbf e_2 + F_{pz} \mathbf e_3 + F_{pw} \mathbf e_4 + F_{gx} \mathbf e_{423} + F_{gy} \mathbf e_{431} + F_{gz} \mathbf e_{412} + F_{gw} \mathbf e_{321}$$ $$\widehat{\left\Vert\mathbf F\right\Vert} = \sqrt{\dfrac{F_{px}^2 + F_{py}^2 + F_{pz}^2 + F_{gw}^2}{F_{gx}^2 + F_{gy}^2 + F_{gz}^2 + F_{pw}^2}}$$ Half the distance that the origin is moved by the flector $$\mathbf F$$.

See Also