Contents

From Rigid Geometric Algebra
Jump to navigation Jump to search

This is the table of contents for Projective Geometric Algebra Illuminated.

  • Preface
  • 1 Conventional Mathematics
    • 1.1 The Cross Product
    • 1.2 Homogeneous Coordinates
    • 1.3 Lines and Planes
      • 1.3.1 Parametric Forms
      • 1.3.2 Implicit Forms
      • 1.3.3 Distance Between a Point and a Line
      • 1.3.4 Intersection of a Line and a Plane
      • 1.3.5 Intersection of Multiple Planes
      • 1.3.6 Reflection Across a Plane
      • 1.3.7 Homogeneous Formulas
      • 1.3.8 Plane Transformation
      • 1.3.9 Line Transformation
    • 1.4 Quaternions
      • 1.4.1 Quaternion Fundamentals
      • 1.4.2 Rotations With Quaternions
      • 1.4.3 Interpolating Quaternions
      • 1.4.4 Dual Quaternions
    • Historical Remarks
  • 2 Flat Projective Geometry
    • 2.1 Algebraic Structure
      • 2.1.1 The Wedge Product
      • 2.1.2 Bivectors
      • 2.1.3 Trivectors
      • 2.1.4 Basis Elements
    • 2.2 Complements
    • 2.3 Antiproducts
    • 2.4 3D Flat Geometry
      • 2.4.1 Points
      • 2.4.2 Lines
      • 2.4.3 Planes
    • 2.5 Join and Meet
    • 2.6 Duality
    • 2.7 Exomorphisms
    • 2.8 Metric Transformations
      • 2.8.1 The Metric
      • 2.8.2 The Antimetric
      • 2.8.3 Bulk and Weight
      • 2.8.4 Attitude
    • 2.9 Inner Products
    • 2.10 Norms
      • 2.10.1 Bulk and Weight Norms
      • 2.10.2 Unitization
      • 2.10.3 The Geometric Norm
    • 2.11 Euclidean Distances
    • 2.12 Duals
    • 2.13 Interior Products
      • 2.13.1 Contractions
      • 2.13.2 Projection and Rejection
      • 2.13.3 Euclidean Angles
      • 2.13.4 Parametric Forms
      • 2.13.5 Expansions
      • 2.13.6 Geometric Projection
    • 2.14 2D Flat Geometry
    • 2.15 Dependencies
    • Historical Remarks
  • 3 Rigid Transformations
    • 3.1 The Geometric Product
    • 3.2 Dual Numbers
    • 3.3 Reflection and Rotation
    • 3.4 Reversion
      • 3.4.1 Reverse and Antireverse
      • 3.4.2 Dual Identities
      • 3.4.3 Geometric Constraint
    • 3.5 Euclidean Isometries
      • 3.5.1 Reflection
      • 3.5.2 Rotation
      • 3.5.3 Translation
      • 3.5.4 Inversion
      • 3.5.5 Transflection
    • 3.6 Motors
      • 3.6.1 Motion Operator
      • 3.6.2 Parameterization
      • 3.6.3 Line to Line Motion
      • 3.6.4 Matrix Conversion
      • 3.6.5 Implementation
    • 3.7 Flectors
      • 3.7.1 Reflection Operator
      • 3.7.2 Matrix Conversion
      • 3.7.3 Implementation
    • 3.8 2D Rigid Transformations
    • 3.9 Operator Duality
      • 3.9.1 Complement Isometries
      • 3.9.2 Transformation Groups
      • 3.9.3 Quaternions Revisited
    • Historical Remarks
  • 4 Round Projective Geometry
    • 4.1 Construction
    • 4.2 3D Round Geometry
      • 4.2.1 Representations
      • 4.2.2 Duals
      • 4.2.3 Carriers
      • 4.2.4 Centers
      • 4.2.5 Containers
      • 4.2.6 Partners
      • 4.2.7 Attitude
    • 4.3 Norms
    • 4.4 Alignment
    • 4.5 Dot Products
      • 4.5.1 Round Points
      • 4.5.2 Spheres
      • 4.5.3 Partners
      • 4.5.4 Conjugates
    • 4.6 Containment
    • 4.7 Join and Meet
    • 4.8 Expansions
    • 4.9 2D Round Geometry
    • 4.10 Degrees of Freedom
  • 5 Conformal Transformations
    • 5.1 Generalized Operators
      • 5.1.1 Rigid Transformations
      • 5.1.2 Sphere Inversion
      • 5.1.3 Circle Rotation
    • 5.2 Dilation
    • 5.3 Duals and Complements
    • 5.4 2D Conformal Transformations
  • A Multiplication Tables
  • B Geometric Properties
  • C Notation Reference
  • Bibliography
  • Index

See Also